3,393 research outputs found

    Instantiated Recoupling in Principals\u27 Enactment of Teacher Evaluations: Emotion Work and New Forms of Ceremonial Conformity in Educational Institutions

    Get PDF
    As accountability policies have proliferated and evolved in a number of organizational fields, recent scholarship in organizational sociology has paid close attention to the ways that accountability has forced tight coupling in a variety of organizations. Fewer recent studies examine efforts at ceremonial conformity that organizations may use to buffer internal practices from institutional pressures, or how organizations and their actors might attempt to engage in ceremonial conformity under newer accountability regimes. In this article, we examine how school principals enact state-mandated teacher evaluation policies with their teachers. To manage teachers\u27 stress caused by the evaluations, we find that principals often allow, and at times enable, teachers to put on a “dog and pony show” during formal evaluations, a performance that aligns with district instructional policies but deviates from their common everyday practices. We argue that this is a novel form of ceremonial conformity that we call instantiated recoupling

    Vampire Bats and Rabies: Toward an Ecological Solution to a Public Health Problem

    Get PDF
    In the first half of 2011, 21 school-age children and two adults died of rabies transmitted by the common vampire bat (Desmodus rotundus) in and around the small rural village of Yupicusa in the Peruvian Amazon (Figure 1) [1]. This is only one of many such outbreaks occurring throughout the greater Amazon Basin (Figure 2), which, despite efforts at increasing education, vaccination, and bat population control, seem to have escalated over the last three decades—a timeline concurrent with major social and ecological changes in the area [2]. The remote and impoverished nature of communities affected by these outbreaks and the unique niche of vampire bats in a changing socioecological landscape create challenges beyond those faced in previous rabies control efforts and require new strategies to address this public health menace through ecosystem-level intervention. Here we examine this complex system and offer perspectives from a field expedition to Imaza following the 2011 outbreak

    A validated measure of adherence to antibiotic prophylaxis in children with sickle cell disease

    Get PDF
    BACKGROUND: Antibiotic prophylaxis is a mainstay in sickle cell disease management. However, adherence is estimated at only 66%. This study aimed to develop and validate a Sickle Cell Antibiotic Adherence Level Evaluation (SCAALE) to promote systematic and detailed adherence evaluation. METHODS: A 28-item questionnaire was created, covering seven adherence areas. General Adherence Ratings from the parent and one health care provider and medication possession ratios were obtained as validation measures. RESULTS: Internal consistency was very good to excellent for the total SCAALE (α=0.89) and four of the seven subscales. Correlations between SCAALE scores and validation measures were strong for the total SCAALE and five of the seven subscales. CONCLUSION: The SCAALE provides a detailed, quantitative, multidimensional, and global measurement of adherence and can promote clinical care and research

    Minor versus major mergers: the stellar mass growth of massive galaxies from z=3 using number density selection techniques

    Get PDF
    We present a study on the stellar mass growth of the progenitors of local massive galaxies with a variety of number density selections with n≀1×10−4 Mpc−3 (corresponding to M*=1011.24 M⊙ at z=0.3) in the redshift range 0.3<z<3.0. We select the progenitors of massive galaxies using a constant number density selection, and one which is adjusted to account for major mergers. We find that the progenitors of massive galaxies grow by a factor of 4 in total stellar mass over this redshift range. On average the stellar mass added via the processes of star formation, major and minor mergers account for 24±8, 17±15 and 34±14per cent, respectively, of the total galaxy stellar mass at z=0.3. Therefore 51±20per cent of the total stellar mass in massive galaxies at z=0.3 is created externally to their z=3 progenitors. We explore the implication of these results on the cold gas accretion rate and size evolution of the progenitors of most massive galaxies over the same redshift range. We find an average gas accretion rate of∌66±32 M⊙ yr−1 over the redshift range of 1.5<z<3.0. We find that the size evolution of a galaxy sample selected this way is on average lower than the findings of other investigation

    A consistent measure of the merger histories of massive galaxies using close-pair statistics I:Major mergers at z &lt;3.5

    Get PDF
    We use a large sample of ∌350,000\sim 350,000 galaxies constructed by combining the UKIDSS UDS, VIDEO/CFHT-LS, UltraVISTA/COSMOS and GAMA survey regions to probe the major merging histories of massive galaxies (>1010 M⊙>10^{10}\ \mathrm{M}_\odot) at 0.005<z<3.50.005 < z < 3.5. We use a method adapted from that presented in Lopez-Sanjuan et al. (2014) using the full photometric redshift probability distributions, to measure pair fractions\textit{fractions} of flux-limited, stellar mass selected galaxy samples using close-pair statistics. The pair fraction is found to weakly evolve as ∝(1+z)0.8\propto (1+z)^{0.8} with no dependence on stellar mass. We subsequently derive major merger rates\textit{rates} for galaxies at >1010 M⊙> 10^{10}\ \mathrm{M}_\odot and at a constant number density of n>10−4n > 10^{-4} Mpc−3^{-3}, and find rates a factor of 2-3 smaller than previous works, although this depends strongly on the assumed merger timescale and likelihood of a close-pair merging. Galaxies undergo approximately 0.5 major mergers at z<3.5z < 3.5, accruing an additional 1-4 ×1010 M⊙\times 10^{10}\ \mathrm{M}_\odot in the process. Major merger accretion rate densities of ∌2×10−4\sim 2 \times 10^{-4} M⊙\mathrm{M}_\odot yr−1^{-1} Mpc−3^{-3} are found for number density selected samples, indicating that direct progenitors of local massive (>1011M⊙>10^{11}\mathrm{M}_\odot) galaxies have experienced a steady supply of stellar mass via major mergers throughout their evolution. While pair fractions are found to agree with those predicted by the Henriques et al. (2014) semi-analytic model, the Illustris hydrodynamical simulation fails to quantitatively reproduce derived merger rates. Furthermore, we find major mergers become a comparable source of stellar mass growth compared to star-formation at z<1z < 1, but is 10-100 times smaller than the SFR density at higher redshifts.Comment: 26 pages, 18 figures, accepted to MNRA

    Statistical properties of SGR 1900+14 bursts

    Get PDF
    We study the statistics of soft gamma repeater (SGR) bursts, using a data base of 187 events detected with BATSE and 837 events detected with RXTE PCA, all from SGR 1900+14 during its 1998-1999 active phase. We find that the fluence or energy distribution of bursts is consistent with a power law of index 1.66, over 4 orders of magnitude. This scale-free distribution resembles the Gutenberg-Richter Law for earthquakes, and gives evidence for self-organized criticality in SGRs. The distribution of time intervals between successive bursts from SGR 1900+14 is consistent with a log-normal distribution. There is no correlation between burst intensity and the waiting times till the next burst, but there is some evidence for a correlation between burst intensity and the time elapsed since the previous burst. We also find a correlation between the duration and the energy of the bursts, but with significant scatter. In all these statistical properties, SGR bursts resemble earthquakes and solar flares more closely than they resemble any known accretion-powered or nuclear-powered phenomena. Thus our analysis lends support to the hypothesis that the energy source for SGR bursts is internal to the neutron star, and plausibly magnetic.Comment: 11 pages, 4 figures, accepted for publication in ApJ

    The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies

    Full text link
    The Deep Extragalactic Evolutionary Probe (DEEP) is a series of spectroscopic surveys of faint galaxies, targeted at the properties and clustering of galaxies at redshifts z ~ 1. We present the redshift catalog of the DEEP 1 GSS pilot phase of this project, a Keck/LRIS survey in the HST/WFPC2 Groth Survey Strip. The redshift catalog and data, including reduced spectra, are publicly available through a Web-accessible database. The catalog contains 658 secure galaxy redshifts with a median z=0.65, and shows large-scale structure walls to z = 1. We find a bimodal distribution in the galaxy color-magnitude diagram which persists to z = 1. A similar color division has been seen locally by the SDSS and to z ~ 1 by COMBO-17. For red galaxies, we find a reddening of only 0.11 mag from z ~ 0.8 to now, about half the color evolution measured by COMBO-17. We measure structural properties of the galaxies from the HST imaging, and find that the color division corresponds generally to a structural division. Most red galaxies, ~ 75%, are centrally concentrated, with a red bulge or spheroid, while blue galaxies usually have exponential profiles. However, there are two subclasses of red galaxies that are not bulge-dominated: edge-on disks and a second category which we term diffuse red galaxies (DIFRGs). The distant edge-on disks are similar in appearance and frequency to those at low redshift, but analogs of DIFRGs are rare among local red galaxies. DIFRGs have significant emission lines, indicating that they are reddened mainly by dust rather than age. The DIFRGs in our sample are all at z>0.64, suggesting that DIFRGs are more prevalent at high redshifts; they may be related to the dusty or irregular extremely red objects (EROs) beyond z>1.2 that have been found in deep K-selected surveys. (abridged)Comment: ApJ in press. 24 pages, 17 figures (12 color). The DEEP public database is available at http://saci.ucolick.org

    The evolution of galaxies at constant number density: a less biased view of star formation, quenching, and structural formation

    Get PDF
    Due to significant galaxy contamination and impurity in stellar mass selected samples (up to 95 per cent from z = 0–3), we examine the star formation history, quenching time-scales, and structural evolution of galaxies using a constant number density selection with data from the United Kingdom Infra-Red Deep Sky Survey Ultra-Deep Survey field. Using this methodology, we investigate the evolution of galaxies at a variety of number densities from z= 0–3. We find that samples chosen at number densities ranging from 3 × 10−4 to 10−5 galaxies Mpc−3 (corresponding to z ∌ 0.5 stellar masses of M∗ = 1010.95−11.6 M0) have a star-forming blue fraction of ∌50 per cent at z ∌ 2.5, which evolves to a nearly 100 per cent quenched red and dead population by z ∌ 1. We also see evidence for number density downsizing, such that the galaxies selected at the lowest densities (highest masses) become a homogeneous red population before those at higher number densities. Examining the evolution of the colours for these systems furthermore shows that the formation redshift of galaxies selected at these number densities is zform > 3. The structural evolution through size and SÂŽersic index fits reveal that while there remains evolution in terms of galaxies becoming larger and more concentrated in stellar mass at lower redshifts, the magnitude of the change is significantly smaller than for a mass-selected sample. We also find that changes in size and structure continues at z < 1, and is coupled strongly to passivity evolution.We conclude that galaxy structure is driving the quenching of galaxies, such that galaxies become concentrated before they become passive
    • 

    corecore