68 research outputs found

    Resonance-like Goss-Haenchen Shift induced by nano-metal films

    Full text link
    The influence of nano-metal films on the Goos-Haenchen shift (GHS) is investigated. The films deposited at the total reflecting surface of a perspex prism/air have a sheet resistance varying between Z = 25 and 3 000 Ohm. A resonance-like enhancement of the shift and of the absorption is found for TE polarized waves, when the sheet resistance approaches the value of the vacuum impedance. For TM waves the influence of the metal films on the GHS is comparatively weak. The experiments are carried out with microwaves. Keywords: Goos-Haenchen shift; nano-metallic films, microwaves PACS: 42.25.Bs, 42.25.Gy, 42.50.-p, 73.40.GkComment: 6 pages, 4 figure

    Negative magnetoresistance in the nearest-neighbour hopping conduction in granular gold film

    Full text link
    The low temperature (0.5-55 K) conduction of semicontinuous gold film vacuum deposited at T \approx 50 K is studied. The film is near the percolation threshold (thickness 3.25 nm). Its resistance is extremely sensitive to the applied voltage U. At low enough U the film behaves as an insulator (two-dimensional granular metal). In this state the dependences R(T) \propto \exp (1/T) (for T \leq 20 K) and R(U) \propto \exp (1/U)) (for T \leq 1 K and U > 0.1 V) are observed. Magnetoresistance (MR) is negative and can be described by \Delta R(H)/R(0) \propto -H^2/T. This negative MR which manifests itself for nearest-neighbour hopping is rather uncommon and, up to now, has not been clarified. The possible mechanisms of such case of negative MR are discussed.Comment: 9 pages, LATEX, 6 figures. To be published in Physica B. Fig.4 is JPG file, in case of troubles with it, appeal for help and advice to: [email protected]

    FePt icosahedra with magnetic cores and catalytic shells

    Get PDF
    Surprisingly oxidation resistant icosahedral FePt nanoparticles showing hard-magnetic properties have been fabricated by an inert-gas condensation method with in-flight annealing. High-resolution transmission electron microscopy (HRTEM) images with sub-Angstrom resolution of the nanoparticle have been obtained with focal series reconstruction, revealing noncrystalline nature of the nanoparticle. Digital dark-field method combined with structure reconstruction as well as HRTEM simulations reveal that these nanoparticles have icosahedral structure with shell periodicity. Localized lattice relaxations have been studied by extracting the position of individual atomic columns with a precision of about (0.002 nm. The lattice spacings of (111) planes from the surface region to the center of the icosahedra are found to decrease exponentially with shell numbers. Computational studies and energy-filtered transmission electron microscopy analyses suggest that a Pt-enriched surface layer is energetically favored and that site-specific vacancies are formed at the edges of facettes, which was experimentally observed. The presence of the Pt-enriched shell around an Fe/Pt core explains the environmental stability of the magnetic icosahedra and strongly reduces the exchange coupling between neighboring particles, thereby possibly providing the highest packing density for future magnetic storage media based on FePt nanoparticles

    Percolation in Models of Thin Film Depositions

    Full text link
    We have studied the percolation behaviour of deposits for different (2+1)-dimensional models of surface layer formation. The mixed model of deposition was used, where particles were deposited selectively according to the random (RD) and ballistic (BD) deposition rules. In the mixed one-component models with deposition of only conducting particles, the mean height of the percolation layer (measured in monolayers) grows continuously from 0.89832 for the pure RD model to 2.605 for the pure RD model, but the percolation transition belong to the same universality class, as in the 2- dimensional random percolation problem. In two- component models with deposition of conducting and isolating particles, the percolation layer height approaches infinity as concentration of the isolating particles becomes higher than some critical value. The crossover from 2d to 3d percolation was observed with increase of the percolation layer height.Comment: 4 pages, 5 figure

    Electronic transport through domain walls in ferromagnetic nanowires: Co-existence of adiabatic and non-adiabatic spin dynamics

    Full text link
    We study the effect of a domain wall on the electronic transport in ferromagnetic quantum wires. Due to the transverse confinement, conduction channels arise. In the presence of a domain wall, spin up and spin down electrons in these channels become coupled. For very short domain walls or at high longitudinal kinetic energy, this coupling is weak, leads to very few spin flips, and a perturbative treatment is possible. For very long domain wall structures, the spin follows adiabatically the local magnetization orientation, suppressing the effect of the domain wall on the total transmission, but reversing the spin of the electrons. In the intermediate regime, we numerically investigate the spin-dependent transport behavior for different shapes of the domain wall. We find that the knowledge of the precise shape of the domain wall is not crucial for determining the qualitative behavior. For parameters appropriate for experiments, electrons with low longitudinal energy are transmitted adiabatically while the electrons at high longitudinal energy are essentially unaffected by the domain wall. Taking this co-existence of different regimes into account is important for the understanding of recent experiments.Comment: 10 pages, 6 figure

    Untersuchungen zur Keimbildung von Aluminium auf Kohleschichten

    No full text
    corecore