55 research outputs found
Development of an ATCA IPMI controller mezzanine board and its usage on an ATCA ROD evaluator board for the ATLAS LAr upgrade
International audienceIn the context of the LHC upgrades, a new Read-Out Driver (ROD) board for the ATLAS LAr calorimeter is being developed. xTCA (Advanced/Micro Telecom Computing Architecture) is becoming a standard in high energy physics and is a serious candidate for future readout systems. We will present our current developments to master ATCA and to integrate a large number of very high speed links (96 links/8.5 Gbps) on a ROD Evaluator ATCA board. To manage our ROD Evaluator, we have developed a versatile ATCA IPMI controller for ATCA boards which is FPGA Mezzanine Card (FMC) compliant
PMm2: large photomultipliers and innovative electronics for the next-generation neutrino experiments
The next generation of proton decay and neutrino experiments, the
post-SuperKamiokande detectors as those that will take place in megaton size
water tanks, will require very large surfaces of photodetection and a large
volume of data. Even with large hemispherical photomultiplier tubes, the
expected number of channels should reach hundreds of thousands. A funded R&D
program to implement a solution is presented here. The very large surface of
photodetection is segmented in macro pixels made of 16 hemispherical (12
inches) photomultiplier tubes connected to an autonomous front-end which works
on a triggerless data acquisition mode. The expected data transmission rate is
5 Mb/s per cable, which can be achieved with existing techniques. This
architecture allows to reduce considerably the cost and facilitate the
industrialization. This document presents the simulations and measurements
which define the requirements for the photomultipliers and the electronics. A
proto-type of front-end electronics was successfully tested with 16
photomultiplier tubes supplied by a single high voltage, validating the
built-in gain adjustment and the calibration principle. The first tests and
calculations on the photomultiplier glass led to the study of a new package
optimized for a 10 bar pressure in order to sustain the high underwater
pressure.Comment: 1 pdf file, 4 pages, 4 figures, NDIP08, submitted to Nucl. Instr. and
Meth. Phys. Res.
ATLAS liquid argon calorimeter front end electronics
The ATLAS detector has been designed for operation at CERN's Large Hadron Collider. ATLAS includes a complex system of liquid argon calorimeters. This paper describes the architecture and implementation of the system of custom front end electronics developed for the readout of the ATLAS liquid argon calorimeters
Performance of the ATLAS Electromagnetic Calorimeter End-cap Module 0
The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 < eta < 3.2 (inner wheel)
Performance of the ATLAS electromagnetic calorimeter end-cap module 0
The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 eta 3.2 (inner wheel)
- …