74 research outputs found

    Alien Registration- Dumond, John (Eagle Lake, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33022/thumbnail.jp

    The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India

    Get PDF
    Gondwana amalgamated along a suite of Himalayan-scale collisional orogens, the roots of which lace the continents of Africa, South America, and Antarctica. The Southern Granulite Terrane of India is a generally well-exposed, exhumed, Gondwana-forming orogen that preserves a record of the tectonic evolution of the eastern margin of the East African Orogen during the Ediacaran-Cambrian (circa 600–500 Ma) as central Gondwana formed. The deformation associated with the closure of the Mozambique Ocean and collision of the Indian and East African/Madagascan cratonic domains is believed to have taken place along the southern margin of the Salem Block (the Palghat-Cauvery Shear System, PCSS) in the Southern Granulite Terrane. Investigation of the structural fabrics and the geochronology of the high-grade shear zones within the PCSS system shows that the Moyar-Salem-Attur shear zone to the north of the PCSS system is early Paleoproterozoic in age and associated with dextral strike-slip motion, while the Cauvery shear zone (CSZ) to the south of the PCSS system can be loosely constrained to circa 740–550 Ma and is associated with dip-slip dextral transpression and north side-up motion.To the south of the proposed suture zone (the Cauvery shear zone), the structural fabrics of the Northern Madurai Block suggest four deformational events (D1–D4), some of which are likely to be contemporaneous. The timing of high pressure-ultrahigh temperature metamorphism and deformation (D1–D3) in the Madurai Block (here interpreted as the southern extension of Azania) is constrained to circa 550–500 Ma and interpreted as representing collisional orogeny and subsequent orogenic collapse of the eastern margin of the East African Orogen. The disparity in the nature of the structural fabrics and the timing of the deformation in the Salem and the Madurai Blocks suggest that the two experienced distinct tectonothermal events prior to their amalgamation along the Cauvery shear zone during the Ediacaran/Cambrian

    Alien Registration- Dumond, John (Eagle Lake, Aroostook County)

    No full text
    https://digitalmaine.com/alien_docs/33022/thumbnail.jp

    About the Author

    No full text

    Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility

    Get PDF
    International audienceA landmark of developmental biology is the production of reproducible shapes, through stereotyped morphogenetic events. At the cell level, growth is often highly heterogeneous, allowing shape diversity to arise. Yet, how can reproducible shapes emerge from such growth heterogeneity? Is growth heterogeneity filtered out? Here, we focus on rapidly growing trichome cells in the Arabidopsis sepal, a reproducible floral organ. We show via computational modeling that rapidly growing cells may distort organ shape. However, the cortical microtubule alignment along growthderived maximal tensile stress in adjacent cells would mechanically isolate rapidly growing cells and limit their impact on organ shape. In vivo, we observed such microtubule response to stress and consistently found no significant effect of trichome number on sepal shape in wild-type and lines with trichome number defects. Conversely, modulating the microtubule response to stress in katanin and spiral2 mutant made sepal shape dependent on trichome number, suggesting that, while mechanical signals are propagated around rapidly growing cells, the resistance to stress in adjacent cells mechanically isolates rapidly growing cells, thus contributing to organ shape reproducibility
    • …
    corecore