103 research outputs found

    Ewald summation on a helix : a route to self-consistent charge density-functional based tight-binding objective molecular dynamics

    Get PDF
    We explore the generalization to the helical case of the classical Ewald method, the harbinger of all modern self-consistent treatments of waves in crystals, including ab initio electronic structure methods. Ewald-like formulas that do not rely on a unit cell with translational symmetry prove to be numerically tractable and able to provide the crucial component needed for coupling objective molecular dynamics with the self-consistent charge density-functional based tight-binding treatment of the inter-atomic interactions. The robustness of the method in addressing complex hetero-nuclear nano- and bio-systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a screw dislocated zinc oxide nanowire, and an ideal DNA molecule

    Directional-dependent thickness and bending rigidity of phosphorene

    Get PDF
    The strong mechanical anisotropy of phosphorene combined with the atomic-scale thickness challenges the commonly employed elastic continuum idealizations. Using objective boundary conditions and a density functional-based potential, we directly uncover the flexibility of individual α, β and γ phosphorene allotrope layers along an arbitrary bending direction. A correlation analysis with the in-plane elasticity finds that although a monolayer thickness cannot be defined in the classical continuum sense, an unusual orthotropic plate with a directional-dependent thickness can unambiguously describe the out-of-plane deformation of α and γ allotropes. Such decoupling of the in-plane and out-of-plane nanomechanics might be generic for two-dimensional materials beyond graphene

    Buckling behavior of carbon nanotubes under bending: from ripple to kink

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.This paper elucidates the buckling behavior of carbon nanotubes (CNTs) under bending. CNTs are modeled as continuous thin-wall circular tubes, and their buckling is governed by equations that take into account of the sectional Brazier effect and non-uniform structural deformation. The CNT governing equations (fourth-order ordinary differential nonlinear equations with integral conditions) are solved by introducing a continuation algorithm. In addition, the buckling behavior of CNTs under bending is simulated with objective molecular dynamics (OMD), and is used to verify the continuum results. We show that there exist low- and high-strain phases during the bending process of CNTs, and the transition in between may divide the whole bending process into three stages: low-curvature stage, mixed-curvature stage and high-curvature stage. Ripples are generated on the CNT surfaces before the formation of kinks. Compared to single-walled CNTs (SWCNTs), hydrogen-filled CNTs have a longer mixed-strain stage owing to the presence of internal pressure, and are therefore more inclined to exhibit a ripple morphology. Our results offer better understanding of the buckling behavior of CNTs, and may open up new opportunities for the design and applications of novel CNT-based nanoelectronics.National Natural Science Foundation of ChinaProgram for New Century 24 Excellent Talents in UniversityNatural Science Foundation of Heilongjiang Province of ChinaFundamental Research Funds for the Central Universitie

    Laser Induced C60 Cage Opening Studied by Semiclassical Dynamics Simulation

    Get PDF
    Laser induced opening of the C60 cage is studied by a semiclassical electron-radiation-ion dynamics technique. The simulation results indicate that the C60 cage is abruptly opened immediately after laser excitation. The opening of the C60 cage induces a quick increase in kinetic energy and a sharp decrease in electronic energy, suggesting that the breaking of the C60 cage efficiently heats up the cluster and enhances the thermal fragmentation of C60 fullerene

    Assessing the regional development degree – step one: Calibrating the polar diagram

    Get PDF
    The issue of regional development is widely debated, regulated and analyzed in official EU documents, as well as in specialized literature. The theme of the research is extensive and it includes the analysis of economic, legal and administrative dimensions that contribute to the development of a strong interdisciplinary research. The traditional objective of regional development policies is to reduce regional disparities, intra and interregional, achieving a relative balance between economic and social development levels of various areas of a national territory. To achieve this goal, it is necessary to develop management tools capable of providing an objective scientific analysis developing reliable data to contribute to the shaping in an essential manner the main directions of regional development. The article is the first part of the “Polar diagram – Tool for periodic assessment of the degree of regional development” and it aims to achieve a brief description of regional development areas that are the subject of analysis of the project, as well as highlighting the main indicators that will be used in the research, in order to contribute to the development of a regional polar diagram

    DFTB+, a software package for efficient approximate density functional theory based atomistic simulations

    Get PDF
    DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green’s functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives

    Collapsed carbon nanotubes : from nano to mesoscale via density functional theory-based tight-binding objective molecular modeling

    Get PDF
    Due to the inherent spatial and temporal limitations of atomistic modeling and the lack of efficient mesoscopic models, mesoscale simulation methods for guiding the development of super strong lightweight material systems comprising collapsed carbon nanotubes (CNTs) are currently missing. Here we establish a path for deriving ultra-coarse-grained mesoscopic distinct element method (mDEM) models directly from the quantum mechanical representation of a collapsed CNT. Atomistic calculations based on density functional-based tight-binding (DFTB) extended with Lennard-Jones interactions allow for the identification of the cross-section and elastic constants of an elastic beam idealization of a collapsed CNT. Application of the DFTB quantum treatment is possible due to the simplification in the number of atoms introduced by accounting for the helical and angular symmetries exhibited by twisted and bent CNTs. The multiscale modeling chain established here is suitable for deriving ultra-coarse-grained mesoscopic models for a variety of microscopic filaments presenting complex interatomic bondings

    Density functional theory calculations of the carbon ELNES of small diameter armchair and zigzag nanotubes: core-hole, curvature and momentum transfer orientation effects

    Full text link
    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1nm using the all-electron Full-Potential(-Linearised)-Augmented-Plane-Wave (FPLAPW) method. Emphasis is laid on the effects of curvature, the electron beam orientation and the inclusion of the core-hole on the carbon electron energy loss K-edge. The electron energy loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature induced πσ\pi-\sigma hybridisation is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron energy loss measurements. We also find that, the energy loss near edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, the ELNES of carbon nanotubes show a reduced anisotropy.Comment: 25 pages, 15 figures, revtex4 submitted for publication to Phys. Rev.
    corecore