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(2013) Ewald summation on a helix : a route to self-consistent charge density-functional based
tight-binding objective molecular dynamics. Journal of Chemical Physics, 139. ISSN 0021-9606

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Ewald summation on a helix: A route to self-consistent charge density-
functional based tight-binding objective molecular dynamics
I. Nikiforov, B. Hourahine, B. Aradi, Th. Frauenheim, and T. Dumitrică 
 
Citation: J. Chem. Phys. 139, 094110 (2013); doi: 10.1063/1.4819910 
View online: http://dx.doi.org/10.1063/1.4819910 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v139/i9 
Published by the AIP Publishing LLC. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1042240683/x01/AIP-PT/Goodfellow_JCPCoverPg_090413/NEW_Goodfellow_banner.jpeg/6c527a6a7131454a5049734141754f37?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=I. Nikiforov&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=B. Hourahine&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=B. Aradi&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Th. Frauenheim&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=T. Dumitric&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4819910?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v139/i9?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 139, 094110 (2013)

Ewald summation on a helix: A route to self-consistent charge
density-functional based tight-binding objective molecular dynamics

I. Nikiforov,1 B. Hourahine,2 B. Aradi,3 Th. Frauenheim,3 and T. Dumitrică1,a)
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We explore the generalization to the helical case of the classical Ewald method, the harbinger of all
modern self-consistent treatments of waves in crystals, including ab initio electronic structure meth-
ods. Ewald-like formulas that do not rely on a unit cell with translational symmetry prove to be
numerically tractable and able to provide the crucial component needed for coupling objective molec-
ular dynamics with the self-consistent charge density-functional based tight-binding treatment of the
inter-atomic interactions. The robustness of the method in addressing complex hetero-nuclear nano-
and bio-systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a
screw dislocated zinc oxide nanowire, and an ideal DNA molecule. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4819910]

I. INTRODUCTION

A generalization of periodic molecular dynamics (MD)
termed objective MD1 provides a rigorous way of making
dynamic calculations using a restricted set of atoms placed
under boundary conditions which require only the minimal
number of atoms to correctly represent the system; these
can include geometries with helical (discrete coupled rota-
tion and translation) symmetry. This method is applicable
to a wide variety of molecular structures from the nano-
and bio-science areas, united under the concept of objective
structures.2 Examples of such structures are carbon nanotubes
and other nanostructures now being synthesized, including
screw-dislocated nanowires,3 the tails and capsids of many
viruses,4 ideal DNA, and amyloid fibrils. To carry out ob-
jective MD simulations with forces derived from electronic
structure methods for structures with electrostatic and mi-
croscopic dispersion interactions, it is necessary to evaluate
the electrostatic potential V at a reference point located at
X = (

r ′ cos θ ′,−r ′ sin θ ′, T ′)

V (X) =
+∞∑

ζ=−∞

′ 1

|X − Xζ | , (1)

and the dispersion part of the van der Waals energy

W (X) =
+∞∑

ζ=−∞

′ 1

|X − Xζ |6 , (2)

when Xζ are equidistantly distributed over an ideal helix, as
shown in Fig. 1(a). The coordinates of the helical charges are
described by

Xζ = Rζ X0 + ζT, ζ = −∞, . . . ,+∞ . (3)

a)Author to whom correspondence should be addressed. Electronic mail:
dtraian@me.umn.edu

In the above equation, there is a charge located at position
X0 = (r cos θ0,−r sin θ0, T0) in the ζ = 0 cell. There is a
singularity if X coincides with the position of X0. The sym-
bol

∑′ indicates that in this situation, the singular term from
ζ = 0 is excluded from the summation. The basic helical op-
eration is defined by a rotation of angle θ , described by the
matrix R,

R =

⎛
⎜⎝

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞
⎟⎠ , (4)

coupled with a simultaneous translation by the axial vector
T = (0, 0, T), both oriented by convention with respect to the
z-axis.

The fundamental problem of evaluating the electrostatic
field generated by discrete charges distributed in helical pat-
terns is encountered in a number of areas of modern science.
For example, in condensed matter physics, it is highly rel-
evant for chiral charge-density waves5 and for understand-
ing the spin selective transport in helical molecular systems.6

In biological physics and soft matter, this problem is im-
portant in understanding the relation between the helical
structural and the generated local electric field,7–9 the elec-
trostatic interaction between biological helices,10, 11 and the
electrostatic-driven helical patterns formed in fibers, nan-
otubes, and pores.12 With the Green-function technique and
cylindrical and helical coordinates, analytical solutions have
been derived. Unfortunately, these formulas are quite com-
plex and appear less usable in practice, especially when they
are expressed in terms of helical Bessel functions.13 Similar
to the approach explored here, the electrostatic interaction be-
tween discrete helices of charge with parallel axes have been
examined based on truncated Fourier expansions of the dis-
crete Coulomb sums.10
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FIG. 1. (a) Geometry for a discrete helical charge distribution. Charges on
the helix at sites ζ = 0, 1, 2 are shown in red, while compensating charges on
the axis are green. (b) Example of a helical distribution of atoms in a boron
nitride nanotube with one helix marked as red sites.

Direct numerical summations of the discrete Coulomb
and dispersion sums are computationally inefficient and
become intractable in the context of molecular dynamics and
electronic structure calculations. For bulk systems with trans-
lational symmetry, Ewald14 techniques15–17 are currently uti-
lized to evaluate such summations. These are mixed space ap-
proaches based on the classical Ewald method presented in
diverse textbooks.18, 19 The short range contribution is eval-
uated in real space (where it decays rapidly) while the long
range part is converted into a reciprocal space sum that is also
fast converging. Originally proposed in three dimensions, the
method has been generalized to one and two dimensions.20–23

Because objective MD renounces translational symmetry,
none of these approaches are applicable here. Unfortunately,
the utility of a helical Ewald approach has not been yet
explored.

Our particular objective is to enable microscopic cal-
culations in objective structures within the self-consistent
charge (SCC) density-functional based tight-binding (DFTB)
scheme.24 Note that the coupling of objective MD with the
earlier two-center non-orthogonal TB and DFTB potentials25

(extended to capture dispersion forces within a cutoff ap-
proximation), has already been achieved.26, 27 This non-SCC-
DFTB objective MD methodology was successfully utilized
to study homonuclear structures such as hexagonal, polycrys-
talline, and screw-dislocated silicon nanowires,26, 28 carbon
nanotubes,29–31 graphene,32 and graphene nanoribbons,33 and
often produced compelling results. Unfortunately, the non-
SCC-DFTB level of model is insufficient to tackle the rich
variety of available helical nano- and bio-structures (for a re-
cent review see Ref. 34) showing complex microscopic in-
teractions, or for describing large mechanical deformations,
or making credible predictions of new helical materials. The
SCC-DFTB generalization is instead needed as it is more
closely connected with first principles density functional the-
ory (DFT) methods. As presented on several occasions,24, 35, 36

SCC-DFTB offers a superior description of chemical binding,
especially in heteronuclear systems, while still being compu-
tationally efficient enough to allow for dynamical simulations.
Both aspects are important for objective MD simulations of
complex structures. The SCC-DFTB description is superior

to force field approaches and, in fact, has even been used36 as
the high-level method in quantum mechanics/molecular me-
chanics (QM/MM) simulations.

Unfortunately, evaluation of the aforementioned
Coulomb sums on helices is a requirement for calculating
the SCC-DFTB corrections in the objective MD framework.
We approach this problem with the Ewald method general-
ized to helical symmetry. In Sec. II we present the Ewald
formulas for Coulomb and dispersion sums, and discuss
their applicability with a numerical example. In Sec. III
we briefly indicate how these formulas are then used in the
SCC-DFTB formalism. The power of the resultant method
is next illustrated with proof of concept self-consistent
simulations of a boron-nitride (BN) nanotube, a zinc oxide
(ZnO) nanowire containing a screw dislocation, and an ideal
DNA molecule including van der Waals interactions. We
highlight that all of the presented simulations are otherwise
inaccessible to current methods without objective boundary
conditions. Section IV gives the conclusions.

II. THE HELICAL EWALD METHOD

A. Coulomb sums

The approach investigated here is a direct generalization
of the original Ewald method.14 To calculate the sum (1), we
use the identity

1

|X − Xζ | = 1√
π

∫ ∞

0
t−1/2exp(−|X − Xζ |2t)dt, (5)

obtained based on the integral representation of the gamma
function.37 Next, with the help of an adjustable Ewald param-
eter η, we split the integration into long (V L) and short (V S)
ranged terms

V L =
+∞∑

ζ=−∞

′ 1√
π

∫ η

0
t−1/2exp(−|X − Xζ |2t)dt (6)

and

V S =
+∞∑

ζ=−∞

′ 1√
π

∫ ∞

η

t−1/2exp(−|X − Xζ |2t)dt. (7)

The distance between the observation point, X, and the
location of charge, ζ , at Xζ = (r cos(ζθ + θ0), −r sin (ζθ

+ θ0), ζT + T0), is

|X − Xζ |2 = r2 + r ′2 − 2rr ′ cos (ζθ + θ0 − θ ′)

+(ζT + T0 − T ′)2. (8)

We focus first on V L. Concerning the angular term in θ ,
it is important to Fourier transform it as

e2rr ′ cos(ζθ+θ0−θ ′)t =
+∞∑

l=−∞
Il(2rr ′t)e−il(ζθ+θ0−θ ′), (9)

where index l is an integer and Il is the modified Bessel
function of the first kind. The translational part is appropri-
ate for the standard Poisson summation formula,38 which in
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one-dimension allows for39

+∞∑
ζ=−∞

e−t(ζT +T0−T ′)2−ilζ θ

=
+∞∑

k=−∞

∫ +∞

−∞
e−t(xT +T0−T ′)2

e−i(lθ+2πk)xdx

=
√

π

T

+∞∑
k=−∞

t−1/2e−i(lθ+2πk) T ′−T0
T e

− (lθ+2πk)2

4tT 2 . (10)

Combining these results, the above integration was solved af-
ter recognizing that it represents the Fourier transform of a
Gaussian function. Thus,

V L = 1

T

+∞∑
l=−∞

+∞∑
k=−∞

e−il(θ0−θ ′)e−i(lθ+2πk) T ′−T0
T

×
∫ η

0
t−1Il(2rr ′t)e− (lθ+2πk)2

4tT 2 −(r2+r ′2)t
dt

− 2

√
η

π
δX0,X. (11)

The integral in the first term differs from the leaky aquifer
function40 encountered when performing Ewald summation
in the pure one-dimensional case,21 due to the presence of the
modified Bessel function. Notice also that the original Poisson
formula still includes the ζ = 0 term, regardless of the pos-
sible singularity mentioned above. The last term in the above
equation is needed in order to insure consistency with Eq. (6).

The summation in Eq. (1) diverges because of the infinite
extent of the helix. We remedy this by using the concept of a
compensating background charge. The key point is that this
divergence is due to the l = k = 0 term of Eq. (11). We elimi-
nate it by subtracting the k = 0 term21 (itself divergent) arising
from an equispaced line of counter charges located along the
z-axis, starting at the origin and spaced at an interval of T, as
depicted in Fig. 1(a). The corrected term then becomes

V L
l=k=0 = 1

T

∫ η

0
t−1I0(2rr ′t)e−(r2+r ′2)t dt− 1

T

∫ η

0
t−1e−r ′2t dt.

(12)

The remaining term can be written as

V L
l&k �=0 = 1

T

+∞∑
l=−∞

+∞∑
k=−∞

e−il(θ0−θ ′)e−i(lθ+2πk) T ′−T0
T

×
∫ η

0
t−1Il(2rr ′t)e− (lθ+2πk)2

4T 2 t
−(r2+r ′2)t

dt. (13)

To summarize, the long-ranged part of the electrostatic
potential due to the helical charge distribution, less the back-
ground term, is

V L = V L
l=k=0 + V L

l&k �=0 − 2

√
η

π
δX0,X. (14)

We treat the V S term with an approach similar to the one
carried out for the one-dimensional lattice case.21 After per-
forming the change in variables yζ = |X − Xζ |2t and y = r′2t,

we obtain

V S =
+∞∑

ζ=−∞

′ 1√
π |X − Xζ |

∫ ∞

η|X−Xζ |2
y

−1/2
ζ exp(−yζ )dyζ

− 1

T

∫ +∞

ηr ′2
y−1e−ydy

=
+∞∑

ζ=−∞

′ �(1/2, η|X − Xζ |2)√
π |X − Xζ | − �(0, ηr ′2)

T
. (15)

Here, � is the incomplete gamma function. The second term
after the equal sign is the remaining short-range background
contribution from the neutralizing line of charge.

We now detail how the above approach is used in prac-
tice. As stated before, under objective boundary conditions,
we build the infinite structure not from translational unit cells,
but from helical unit cells, Figs. 3(b), 4(b), and 5(b). The
quantity of interest is the electrostatic potential at a given
atomic site due to all other atoms in the infinite structure. To
calculate it, we view the infinitely long structure as a collec-
tion of infinitely long helices with a common axis – each in-
dividual atom in the unit cell becomes a separate helix. For
example, a (3,3) nanotube shown in Fig. 1(b) is composed of
six helices such as the one delineated with big (red) balls. To
each helix we add one line of charges of opposite sign. As
mentioned, these have a spacing of T and lay on the z-axis,
starting at the origin. Thus, the lines of counter-charges from
each helix coincide geometrically. Assuming the unit cell is
overall neutral, when the contributions from all of the helices
are summed to obtain the electrostatic potential, the effect of
the counter-charges cancels out. We revisit the neutralizing
charges in Sec. III, where we show the expression for the elec-
trostatic potential and provide a proof of the aforementioned
cancellation.

B. Dispersion sums

To calculate the sum in Eq. (2), we use the identity

1

|X − Xζ |6 = 1

2

∫ ∞

0
t2exp(−|X − Xζ |2t)dt. (16)

As before, with the help of a controlling parameter η, we split
Eq. (2) into long (WL) and short (WS) ranged components.

For WL we have

WL =
√

π

2T

+∞∑
l=−∞

+∞∑
k=−∞

e−il(θ0−θ ′)e−i(lθ+2πk) T ′−T0
T

×
∫ η

0
t3/2Il(2rr ′t)e− (lθ+2πk)2

4tT 2 −(r2+r ′2)t
dt

−η3

6
δX0,X. (17)

Note that a background term is not needed here because
Eq. (2) is convergent.
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Regarding WS , after performing the change in variables
yζ = |X − Xζ |2t and y = r′2t, we obtain

WS =
+∞∑

ζ=−∞

′ 1

2|X − Xζ |6
∫ ∞

η|X−Xζ |2
y2

ζ exp(−yζ )dyζ

=
+∞∑

ζ=−∞

′ �(3, η|X − Xζ |2)

2|X − Xζ |6 . (18)

C. Numerical example

It is not immediately obvious if the formulas presented
above are numerically tractable and accurate in a truncated
form, i.e., when indices |ζ |, |l|, and |k| are bounded by ζ max,
lmax, and kmax, respectively. The evaluation of the integral in
V L also introduces some complexity as it requires a quadra-
ture over the variable t, typically discretized as n nodes.

We have implemented the Ewald formulas for V and W

as an independent Fortran module41 and explored the appli-
cability of the electrostatic sums for a simple numerical ex-
ample. We use the geometry of the (3, 3) nanotube shown in
Fig. 1(b), on translating by T = 1.42 Å along z the unit cell
repeats with a rotation of θ = 60◦. To calculate the Ewald sum
for the interaction of an atom with its helical images (such as
the set of atoms highlighted in red in Fig. 1(b)), we place X′
and X0 on the surface of a tube of radius of r = r′ = 1.02 Å,
and set θ ′ = θ0 = T′ = T0 = 0.

The Ewald approach is robust since, when converged,
the result will not depend on the specific value for the con-
trolling parameter η. However, careful selection of η is de-
sirable for increasing the computational efficiency as the nu-
merical approach is a balancing act between the cost of V L

and V S evaluations. Lowering η increases the ζ max that needs
to be considered for the sum in V S , but decreases the lmax,
kmax, and n required for the V L term to converge. We find
that the sum V S can be computed relatively quickly, and,
as can be seen from Fig. 2(a), converges approximately ex-
ponentially with ζ max. The function evaluation and numeri-
cal integration (using a simple trapezoidal rule) involved in
calculating V L is more time-consuming and shows only an
approximately power law convergence with the number of
nodes (Fig. 2(b)). Therefore, the optimal choice for η is small.
So small as a matter of fact, that V S is dominant enough to
be considered a first-order approximation to V . In this case

we find η = 5 × 10−4 bohr−2 provides the fastest com-
putational time, for which V S = −0.542 hartree/e2, while
V L = −0.0259 hartree/e2. Here e is the electron charge.

We now examine the number of summation indices and
numerical integration nodes required to achieve a precision
greater than 10−10 hartree/e2. From Fig. 2(a) it can be seen
that ζ max = 80 is more than sufficient for this precision in V S .
Regarding V L, because the variable of integration t is kept
small, the exponential factor exp(− (lθ+2πk)2

4T 2t
) in the integrand

of Eq. (13) decays extremely quickly with lθ + 2πk. Thus,
|k| > 0 terms almost never have to be considered, and |l| > 0
terms do not have to be considered when θ is large, such as
in this example. Figure 2(b) shows that n = 8 is sufficient to
reach the desired accuracy. This is because the integrand of
V L is relatively flat in the interval of integration 0 < t < η,
Fig. 2(c). The computational time required with these val-
ues is nearly negligible, ∼10 ms on a single core. The errors
shown in Fig. 2 are calculated with respect to V S evaluated
with ζ max = 160 and V L evaluated with n = 1 000 000. These
quantities are converged to 10−15 hartree/e2 – doubling the
parameters produces identical results to that precision. As ex-
pected, increasing (reducing) η requires a lower (higher) value
of ζ max in the evaluation of V S , while increasing (decreasing)
lmax and n in evaluating V L. The optimal ηT2 value increases
with decreasing r/T and r′/T.

When θ is small, however, the k = 0 and |l| > 0 terms
of V L need to be also considered. Because the integrands be-
come more non-linear, an increased number of nodes of in-
tegration will be required. Thus, for small θ , it is even more
important to keep η small to reduce the computational effort
of computing V L. This, in turn, would require more terms to
be considered in the V S sum.

III. SCC-DFTB UNDER OBJECTIVE BOUNDARY
CONDITIONS

Encouraged by the above results, we used the developed
module to couple SCC-DFTB to the helical symmetry. This
represents the key step for developing the SCC-DFTB objec-
tive MD capability.

Objective molecular structures2 are structures consisting
of a finite or infinite set of identical cells (referred to as
molecules), each cell having M atoms, in which the atomic
environments of two corresponding atoms located in differ-
ent cells can be mapped into each other by an orthogonal

FIG. 2. (a) Convergence of V S with increasing ζmax. (b) Convergence of V L with the number of integration nodes n. (c) Integrand of V L, showing upper limit
of integration with dashed line.
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FIG. 3. SCC-DFTB simulation of intrinsic twist of (4, 2) BN nanotube.
(a) Atomic structure and (b) objective computational domain containing M
= 12 atoms. (c) Minimization of strain energy with respect to twist angle.

transformation, including the more complex helical transfor-
mations. We consider an infinitely long structure extended in
the z direction, where the j atom, located at Xj,ζ in the cell
labeled by index ζ , can be mapped on the atom located at Xj

in the reference cell using2

Xj,ζ = Rζ Xj + ζT, j = 1, . . . , M, −∞ < ζ < ∞. (19)

As before, R is an axial rotational matrix of angle θ and T the
axial vector of the helical transformation. In objective MD,1

only the atoms located in one cell are evolved in time un-
der the objective boundary conditions, based on the objective
structure formulas given by James.2 For example, the ideal
(4, 2) BN nanotube of Fig. 3, objective simulations could be
carried on the domain containing a finite M = 12 atoms placed
under the boundary conditions provided by Eq. (19). Ideal val-
ues for θ , and T corresponding to the rolled-up construction
can be obtained for any nanotube by following the approach
detailed in Ref. 43.

It is beyond the scope of this paper to review the two-
center symmetry-adapted non-orthogonal TB and the well es-
tablished SCC-DFTB. For the objective structures with heli-
cal symmetry, the energy functional, Hamiltonian matrix ele-
ments, and secular equations for the SCC-DFTB take similar
forms to the standard periodic case. We therefore only indi-
cate where Eqs. (1) and (2) enter into the machinery:

(i) Besides the usual band structure and short-ranged
repulsive terms, the total energy in SCC-DFTB includes a
Coulomb interaction between charge fluctuations, �q, mea-
sured with respect to the Mulliken charges of isolated neutral
atoms. For an objective structure described by Eq. (19), the
long-ranged part of this energy term, labeled E2nd, takes the
form

E2nd = 1

2

M∑
i=1

�qiV (Xi) . (20)

E2nd also brings a contribution to the Hamiltonian matrix ele-
ments. This correction is of the form

〈iα|H2nd |jβ >= 1

2
< iα|jβ > [V (Xi) + V (Xj )], (21)

where |iα > and |jβ > are symmetry-adapted Bloch sums.26

Here i and j label atoms located in the computational cell,
while α and β indicate orbital symmetries. At every “obser-
vation point” Xi, the electrostatic potential V (Xi) is generated
by the discrete charges �qj distributed over M ideal helices,
one for each of the M atoms in the objective cell

V (Xi) =
M∑

j=1

′
∞∑

ζ=−∞

�qj

|Xi − Xj,ζ | . (22)

Accurate evaluation is important since this correction term,
Eq. (21), enters directly into the secular equation, which is
central to SCC-DFTB. While in a neutral system the electro-
static potential (22) is a well-defined and finite quantity, each
individual helical sum over ζ arising from a single atom in
the unit cell is divergent, as it represents an infinite number
of particles of identical finite charge �qj. These divergences,
of course, cancel out to produce the finite V (Xi). However in
practice one must compute each individual sum over ζ be-
fore summing over j. Therefore, in our method, each indi-
vidual helical sum is evaluated with the generalized Ewald
formulas (14) and (15), where the divergences are elimi-
nated with the help of the added neutralizing lines of charge.
The neutralizing lines of charge cancel out when the individ-
ual helical sums are combined, as illustrated in Figure 1 in
the supplementary material41 and demonstrated in the next
paragraph.

We now show why the neutralizing lines of charges do
not affect in the end the value of V (Xi). When the counter-
charges are explicitly included, Eq. (1) becomes V (Xi)
= ∑M

j=1
′ ∑∞

ζ=−∞ �qj ( 1
|Xi−Xj,ζ | − 1

|Xi−Xc,ζ | ). Here, the addi-
tional term is the potential due to the infinite line of counter-
charges Xc, ζ located on the z-axis at z = (− ∞, . . . , −2T,
−T, 0, T, 2T, . . . , ∞). In our Ewald implementation, it is
comprised of the latter terms of Eqs. (12) and (15). How-
ever, since the locations of the counter-charges are identi-
cal for each helix (independent of j), we can write V (Xi)
=∑M

j=1
′ ∑∞

ζ=−∞
�qj

|Xi−Xj,ζ | − ∑∞
ζ=−∞

1
|Xi−Xc,ζ |

∑M
j=1 �qj . For

a neutral system,
∑M

j=1 �qj is zero, thus the value of V (Xi)
is not affected by the introduction of the counter-charges.

(ii) The original DFTB has deficiencies in describing
the long-ranged dispersion forces. To remedy this, a van der
Waals term is added to the SCC-DFTB energy.27, 44, 45 Its long
range attractive component is

Edis = −
M∑
i=1

W (Xi), (23)

where

W (Xi) =
M∑

j=1

′
∞∑

ζ=−∞

C
ij

6

|Xi − Xj,ζ |6 . (24)

Here C
ij

6 is the van der Waals coefficient between atoms i
and j. W (Xi) represents the attraction between atom i and the
atoms distributed over helices, labeled by j. It will be evalu-
ated with Eqs. (17) and (18).

We emphasize once more that our technical solution to
compute the sums in Eqs. (1) and (2) does not rely on a
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unit cell with translational symmetry. (T is simply the trans-
lation component of the helical operation.) This important
feature combined with the symmetry-adapted formulation of
the Bloch sums26 ensures that SCC-DFTB objective MD can
fully renounce translational symmetry in favor of a genuine
helical geometry.

We find that the generalization to helical case of the clas-
sical Ewald approach is pivotal for SCC-DFTB calculations
under the boundary conditions of Eq. (19). The structural
relaxations described next were carried out with a develop-
mental version of the code DFTB+.42 The simulations were
considered converged when the magnitude of the maximum
force on any atom was less than 1.0−4 hartree/bohr.

A. Chiral BN nanotube

We first demonstrate the method for one-atom-thick het-
eronuclear nanotubes. In this system we demonstrate the suit-
ability of the proposed electrostatic approach when r ≈ r′

and angle θ is relatively large. It is known that the compu-
tational cost of chiral one-dimensional periodic systems, es-
pecially when performed at a quantum mechanical level, is
rather high as nanotubes can contain a large number of atoms
in the periodic unit cell. The structure of nanotubes can be
considered to be a rolled-up section of the planar sheet of the
source material – for example, graphene in the case of car-
bon nanotubes and a hexagonal boron-nitride mono-layer in
the case of BN nanotubes. It has recently been obtained with
non-SCC-DFTB objective MD that a general (n, m) nanotube
can lose the translational periodicity predicted by this rolled-
up construction due to a shear strain manifested as an intrinsic
structural twist; for such cases, simulations relying on trans-
lational symmetry would become even more demanding.43

The rich objective symmetry which characterizes this
class of materials, however, can drastically reduce their com-
putational costs, if adequately exploited. Following the screw-
dislocation procedure described before29, 43 we calculate the
optimal morphology of a (4, 2) BN nanotube, Fig. 3(a),
using a computational cell consisting of six B–N dimers
(12 atoms) positioned along the roll-up vector, Fig. 3(b). The
SCC treatment allows for better description of the partially
ionic bonding in BN. We also used the most up to date DFTB
parameters.46

In order to achieve a tolerance of <10−10 hartree in the
electrostatic energy with this configuration, we use the nu-
merical parameters and maximum summation indices listed
in Table I, with the k-point grid chosen based on the ideas
of Ref. 47. The error is calculated by increasing the integra-
tion nodes and maximum summation indices – the bare min-
imum values required for this level of convergence are listed
in parentheses. Starting with the ideal rolled-up configuration
(modified to match each twist rate value we examine), we per-
form conjugate-gradient relaxations. These calculations in-
volved two stages: We first relax the atomic positions with
fixed twist angle θ at constant T. Next, we optimize the NT
parameter T for these atomic coordinates, at the considered θ .
These simulations take only a few minutes each on a single
core.

TABLE I. SCC-DFTB calculations under objective boundary conditions.
Numerical parameters required to reach a tolerance of 10−10 hartree in heli-
cal Ewald summation of different structures and configurations considered.
In order: Ewald split parameter η, maximum short-range summation index
ζmax, maximum long-range summation indices lmax and kmax, and number of
nodes n used for numerical integration of V L. Number of k-points required
for energy convergence is also listed. Actual parameters used are listed first,
bare minimum parameters required to reach required tolerance are listed in
parentheses.

Structure η (bohr−2) ζmax lmax kmax n k-points

(4, 2) BN nanotube 5 × 10−5 500(200) 1(0) 1(0) 100(<50) 20(10)

ZnO nanowire
θ ≥ 1◦ 5 × 10−5 100(<50) 2(1) 1(0) 100(<50) 10(5)
θ = 0◦ 5 × 10−5 100(<50) 2(1) 1(0) 1000(500) 10(5)

DNA
V 5 × 10−5 200(100) 1(0) 1(0) 100(50) 10(5)
W 5 × 10−5 100(50) 1(0) 1(0) 100(50)

The net Mulliken charges on B and N atoms are found
to be ± 0.366 e. The energy due to the Coulomb part of the
SCC correction is −0.438 hartree for the 12-atom unit cell.
For comparison, we also evaluate this value using direct sum-
mation. Over 4000 images in each direction are required to
reach a tolerance of <10−10 hartree, a significantly increased
computational effort compared to the Ewald approach. The
numerical values are equal up to this tolerance, demonstrat-
ing the validity of the Ewald method. The total energy dif-
ference due to the introduction of SCC corrections, including
the Coulomb interaction, the short-range corrections, and the
self-consistent adjustment of the wavefunction expansions, is
+0.0231 hartree.

The ideal roll-up construction predicts values for θ and T
as 12.86◦/cell and 2.466 Å/cell, respectively. As can be seen
in Fig. 3(c), the untwisted (rolled-up) morphology does not
correspond to a metastable state, in agreement with previ-
ous predictions.43 The analogous non-SCC simulations pre-
dicts a twist angle of 13.51◦/cell and a length of 2.520 Å/cell.
Our present simulation predicts a very similar twist angle of
13.52◦/cell, and a significantly differing (0.3% strain) length
of 2.513 Å/cell.

B. Screw-dislocated ZnO nanowire

We now demonstrate the method in heteronuclear
nanowires, when θ is small and r �= r′ occurs. When a
thin rod contains an axial screw dislocation, it becomes in-
trinsically twisted.48 Interestingly, all the experimentally ob-
served nanowires containing axial screw dislocations are also
twisted.3 With standard methods, one can efficiently simulate
only ideal nanowires by considering their translational peri-
odicity, T, and accounting for the small number of atoms, M,
located in one primitive cell. The generated twist (unknown
a priori) prevents the applicability of the standard periodic
boundary conditions (PBC) treatment. Thus, objective MD is
necessary to model screw-dislocated nanowires in their fully
relaxed configuration. In Refs. 49 and 50, we approached this
problem with the non-SCC DFTB method. SCC provides an
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FIG. 4. SCC-DFTB simulation of Eshelby twist of a ZnO nanowire.
(a) Atomic structure and (b) objective computational domain containing
M = 108 atoms. (c) Minimization of strain energy with respect to twist angle,
showing an Eshelby twist of 6.61◦.

improved description of the binding by including the effects
of electronic charge transfer from Zn to O.

We calculate the optimal length and twist of a ZnO
nanowire of 8.53 Å radius extending along the [0001] direc-
tion, Fig. 4(a). The wire contains a centered axial screw dislo-
cation, with the 5.4 Å minimum Burger’s vector allowable in
ZnO. The simulation cell contains 108 atoms, the same as in
the minimum translational cell of the wire, Fig. 4(b). As be-
fore, we require a tolerance of 10−10 hartree, and the numeri-
cal Ewald parameters used are listed in Table I. The increased
number of integration nodes required for the 0◦ case stems
from the increased importance of the finite-l terms (here lmax

= 1) at small angles. In general, because the integrand of the
finite-l terms is more nonlinear, more nodes of integration are
needed.

The simulations start with relaxed configurations previ-
ously obtained with non-SCC-DFTB, or SCC results geomet-
rically twisted to predict a configuration at a new angle (e.g.,
by applying the ideal geometric twist to the the simulation
result at 1◦ to begin the 2◦ simulation). Each full conjugate-
gradient relaxation took several hours (less than 10 h) on a
single core.

The net charges on the Zn and O atoms range as ±0.432–
0.575 e. The total energy difference due to the introduction
of SCC corrections is +1.07 hartree for the 108-atom unit
cell. Our previous, non-SCC study of this structure predicted
a twist angle of 6.71◦/cell and a length of 5.32 Å/cell.49 The
introduction of SCC changes these values to 6.61◦/cell and
5.28 Å/cell, respectively, Fig. 4(c), confirming that these re-
laxed structures and their amount of twist can be rationalized
with Eshelby’s model.48

C. DNA strand

Finally, we demonstrate the simulation of heteronuclear
biomolecules with this method, when θ is large and r �= r′ is
possible. Here, a larger number of atomic species is present
and both the electrostatic and van der Waals sums are simul-
taneously needed.

Biomolecules are perhaps the most obvious applica-
tion for objective MD coupled with SCC-DFTB and dis-

persion. They often possess helical symmetry, and are al-
most universally characterized by dispersion interactions. All
biomolecules are heteronuclear, requiring the consideration
of charge transfer for the most accurate description possible.
As an emblematic example, here we consider an ideal single
strand DNA.

Traditionally, DNA is simulated using either a cluster
approximation or by PBC with the particle mesh Ewald
method.51, 52 Both of these methods can be problematic. Clus-
ter simulations may introduce spurious end effects, and make
the treatment of long strands of DNA computationally inten-
sive. PBC overcomes these issues, but imposes translational
symmetry constraints on the structure. Additionally, the num-
ber of atoms in the PBC cell is large, and quantum treatments
becomes less applicable. For this reason, simulations of DNA
are typically carried out using empirical force-field models.51

The objective method carries none of these drawbacks.
Segments of arbitrary length may be simulated as part of an
infinite helix possessing arbitrary twist, allowing for study of
sequence-dependent or general properties without end effects.
Additionally, the objective simulations cells typically contain
a small number of atoms, permitting the application of SCC-
DFTB, which offers superior description of the interatomic
interactions.

We have successfully carried out a series of calculations
on a single strand DNA molecule – a helix comprised of
adenosine nucleotides, Fig. 5(a). The computational cell con-
tains 33 atoms and comprises a single nucleotide, as shown
in Fig. 5(b). Because DNA is a soft structure with many
possible metastable configurations,51 we focus our demon-
stration on the determination of the optimal twist angle at
a fixed T = 3.38 Å. This is the typical value for the DNA
B-type double helix, which was used as the starting config-
uration for our single-helix simulation. The coordinates used
are the default coordinates generated for the B-helix by the
nab language.53–55 Formerly, in order to apply PBC to a DNA
structure, investigators had to impose the constraint that there
must be an integer number of nucleotides within one or a few
360◦ turns of the helix. This artificial constraint runs contrary

FIG. 5. SCC-DFTB determination of optimal twist of a DNA molecule with
T = 3.38 Å. (a) Relaxed atomic structure and (b) objective computational
domain containing M = 33 atoms. (c) Minimization of the strain energy with
respect to twist angle, showing optimal twist of 33.27◦/cell. A quadratic curve
is fitted only to the four points nearest to the minimum. The torsional stiffness
is 0.329 hartree Å.
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to the highly flexible and variable nature of the DNA con-
figuration, and is not required here. The twist per single nu-
cleotide is arbitrary and may represent a structure that pos-
sesses no translational periodicity whatsoever.

The interatomic interactions involving elements P, O, N,
C, H were described with the mio-1-1 parameter set.24, 56 We
continue to require an accuracy of 10−10 hartree, and the
values for both the V and W sums are shown in Table I.
These simulations take several hours (less than 5) on a sin-
gle core, implying also that SCC-DFTB calculations on larger
objective cells (containing an integer multiple repeat of the
33 atom cell) should be tractable. We find an optimal twist of
33.27◦/cell, see Fig. 5(c). Thus, our simulation predicts that
the single helix differs significantly from the 36◦/cell twist
angle typically associated with the B-double helix. Our opti-
mized structure does not possess translational periodicity over
any reasonable length. Its behavior deviates significantly from
linear elasticity in the angle range we studied. This is to be ex-
pected when such a soft material, with a complicated config-
uration space, is placed under large strain. Thus, the quadratic
fitting is restricted to the four points closest to the minimum.
The torsional stiffness is 0.329 hartree Å. The P atom is the
most positively charged with 1.23 e, while the O atoms carry
varying negative charges, as large as −0.62 e. The other atoms
are all closer to neutral. The total dispersion energy is +0.14
hartree for the 33-atom cell, while the total energy difference
due to SCC corrections (not including dispersion) is of a sim-
ilar value, +0.15 hartree.

IV. CONCLUSIONS

In this paper, we demonstrated that the generalization of
the Ewald method to a helical geometry gives numerically
tractable formulas for both the electrostatic potential and van
der Waals energies. This approach provides an elegant and ro-
bust way to incorporate helical symmetry into self-consistent
treatments of the interatomic interactions, including SCC-
DFTB and DFT. We successfully conduct proof of concept
SCC-DFTB simulations under objective bounder conditions
in charge-neutral heteronuclear nano- and bio-structures with
various levels of complexity. Overall, objective MD benefits
immensely from the coupling with SCC-DFTB as it increases
the number and variety of objective structures which can be
simulated with unprecedented accuracy. The scheme we pre-
sented is for neutral systems only. It is further appealing to ex-
plore the formulated expression for the Coulomb sum against
the background provided by the neutralizing line of charge
even in charged-cell objective calculations, to compute, for
example, formation energies of charged defects in objective
structures. The effect of the compensating line charges (which
do not cancel out in that case) are still to be investigated.
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