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Abstract

The strong mechanical anisotropy of phosphorene combined with the atomic-scale thickness

challenges the commonly employed elastic continuum idealizations. Using objective boundary

conditions and a density functional-based potential, we directly uncover the flexibility of individual

α, β and γ phosphorene allotrope layers along an arbitrary bending direction. A correlation analysis

with the in-plane elasticity finds that although a monolayer thickness cannot be defined in the

classical continuum sense, an unusual orthotropic plate with a directional-dependent thickness can

unambiguously describe the out-of-plane deformation of α and γ allotropes. Such decoupling of the

in-plane and out-of-plane nanomechanics might be generic for two-dimensional materials beyond

graphene.
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Phosphorene (PE) [1–3] — the crystalline two-dimensional (2D) material exfoliated from

black phosphorous (BP) [4] — is attracting tremendous interest due to its exceptional elec-

trical attributes, which include a high hole mobility (∼1,000 cm2/Vs) [1], and its unique

anisotropic in-plane mechanical, optical and thermal properties [5–13]. If strain is introduced

in PE, further tuning of its exceptional properties can be achieved [14–17]. In practice, uni-

form strains could be applied by preparation of PE on flexible substrates [18]. Furthermore,

the atomic-scale thickness should allow PE to conform to nearly any substrate [19, 20].

Thus, non-uniform strains could be induced by placing PE on nanoscale patterns and on

nanoparticles [21, 22], or by pinning the 2D layer onto a substrate [23].

A key challenge for achieving strain engineering of PE is understanding its bending rigid-

ity (D). As layers are approaching atomic-scale dimensions, deviations from continuum

mechanics are expected [19, 24]. Thus, knowledge of the more accessible in-plane elastic-

ity of PE does not warrant access to its out-of-plane deformation. Elastic theory requires

defining a plate thickness (h). For PE, h is commonly assumed [6] to be 5.5 Å equilibrium

interlayer distance in BP. However, it is not known if the selection of this h leads to con-

sistency between the axial and bending moduli of PE. In graphene — the one-atom thick

layer exhibiting only surfaces — there is a decoupling of the bending from the tensional

deformations [19, 25]. To fit the isotropic plate, a sub-atomic thickness rather than the

inter-layer spacing of graphite should be selected [19, 26].

In this Letter we use PE allotropes as model systems to study the applicability of the

classical plate elasticity to few-atom-thick 2D layers. The investigated structures are dis-

played in Figs. 1a-c: (i) In α PE, Fig. 1a, the P atoms are disposed in a honeycomb lattice

that is periodically rippled with a sub-nanometer periodicity. It presents two type of P-P

bonds: “surface” bonds oriented nearly along the a+b direction, where a and b are the

unit lattice vectors, and “internal” bonds connecting P atoms located on the two surfaces.

(ii) β PE [27], Fig. 1b, contains only “internal” bonds, as the P atoms of the honeycomb

lattice are only buckled up and down in an alternating manner. (iii) γ PE [28], Fig. 1c,

presents both “surface” bonds (oriented along the b direction) and “internal” bonds. We

show via atomistic calculations and continuum analysis that the bending of PE deviates

from the classical plate mechanics, and that this deviation is reflected into a thin plate

model with directional-dependent h. This model is able to capture the nanomechanics of

bending and in-plane stretching, such as for example when stretching of the layer reduces
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the effective curvature via the Poisson effect.

FIG. 1: Top, side views, and lattice vectors (a, b) of a) α PE (a = 3.49 Å, b = 4.35 Å), b) β PE

(a = b = 3.68 Å), and c) γ PE (a = 3.45 Å, b = 5.54 Å). To guide the eye, the atoms and bonds

located on the two surfaces are displayed in different shades. The layer thickness is also shown. d)

A (10,20) α NT is represented by applying to the 4 atom basis cell a finite number of rotations

θ = 10◦ (left) and infinite number of rotations of angle ϕ = 15.50◦ around the NT axis combined

with translation T = 1.62 Å along the NT axis.

In order to quantify the energetics of PE bending, we have performed objective molecular

dynamics (OMD) simulations [29] coupled with symmetry-adapted non-orthogonal tight-

binding [30, 31]. We simulate a bent PE with curvature κ along a direction C = na +mb
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as a (n,m) nanotube (NT) with radius R = 1/κ and chirality χ, where χ is the angle made

by C and a. OMD is a simulation method based on the concept of objective structures [32].

The objective molecular structure description [30, 32] of NTs employed here writes

Xl,i,j = iT +R
j
1
Ri

2
Xl, l = 1, ..., N, (1)

T ≡
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In the above, R1 = Rθ, where θ is the angle describing the angular rotation, and R2 = Rϕ,

where ϕ are the angle comprising the helical operation. T is the translation component of

the helical operation. Xl are the Cartesian coordinates of one of the N atoms located in the

unit cell, Xl,i,j are the coordinates of the i-th helical and j-th angular image of this atom. As

an example, Fig. 1a shows how an infinite α NT is built out of a unit cell containing N = 4

atoms. Similarly, β and γ PE NTs can be built from the N = 2 and N = 4 atom basis,

respectively. With OMD, any PE NT can be calculated by considering only the minimal

basis of N atoms placed under the objective boundaries described by eq. (1).

Our calculations are carried out with a developmental version of the code DFTB+ [33].

We describe the interatomic interactions with a density functional theory-based (DFTB)

potential [34] which comprises spd orbitals located on each P atom. The symmetry-adapted

tight-binding formulation [30, 31] is compatible with eq. (1) as its incorporates helical

and angular symmetries. Here, we simulated a collections of α, β, and γ NTs with radii

11 nm < R < 75 nm. Conjugate-gradient relaxations were performed until the magnitude of

the force on every atom was less than 10−6 Hartree/Bohr. The Brillouin zone in the helical

direction was sampled with 20 k points. All allowed discrete k values in the pure rotational

direction [30] were calculated.

The rolled-up construction [35] of Kirchhoff’s plate theory [36] describes an exact iso-

metric mapping of the PE sheets shown in Fig. 1a-c. Due to finite curvature effects, the

bond lengths and bond angles will be changed upon rolling. If significant, these changes will

reflect in a departure from the ideal values of the structural parameters ϕ and T . Never-

theless, in our simulations we have found that at large radii, the NT structures with ideal

ϕ and T helical parameters [35] correspond directly to local minima of the potential energy

(U). As exemplified in Figs. 2a and b for the case of a (800,0) α NT, the variations (one
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at a time) of the translation T and rotation angles ϕ around the ideal values [35] lead to

energy increase. During the structural relaxations, the N atoms are free to move along the

radial NT direction. After relaxation, each NT radius was measured as the average radius

described by the simulated atoms. Fig. 2c shows that while NTs expand to radii slightly

larger than those predicted by the roll-up construction, the measured radial pre-strain ǫR

is negligible. This means that the circumference of the (n,m) NT equals the length of the

original 2D vector C.

FIG. 2: a) Strain energy of (800,0) α NT as the translation T and b) angle ϕ are varied around the

values predicted by the roll-up construction. Here ǫT = ∆T/T . c) Radial prestrain, ǫR = ∆R/R,

vs. the ideal of α NT radius R. d) Strain energy of α NTs vs. curvature squared, with fitted linear

curves.

Because the OMD calculations revealed that deviations from the roll-up construction are

negligible, we can conclude that large-diameter NTs store only bending energy. Thus, the

slopes of the lines of Fig. 2d correspond to Dα with reference to α PE. Table 1 summarizes

the obtained D = (1/|a × b|)∂2U/∂2κ along the lattice vector directions. We find that D

in the a and b directions are essentially identical for β PE, but very different for α and γ
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FIG. 3: a) Bending moduli of α (left), β (center) and γ (right) PE as a function of direction. Data

points are the DFTB OMD calculations. b) In-plane stretching stiffness, c) shear stiffness, and d)

Poisson’s ratios as a function of direction.

PEs. For example, Dα along the zig-zag direction is ∼ 2.5 larger that along the armchair

direction. Interestingly, the most stable allotrope α presents Dα values significantly larger

than Dβ and Dγ.

Fig. 3a gives the D dependence on χ. The fitting of the computed data leads to the
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interpolations

Dα/GPa Å
3

= 934 + 393 cos 2χ− 16 cos 4χ, (2a)

Dγ/GPa Å
3

= 243− 104 cos 2χ+ 79 cos 4χ. (2b)

From the earlier studies of small-diameter carbon NTs, it is known that curvature can

alter the carbon-carbon bonding [25] to the extent that the elastic constants will show χ

dependence and will differ from those of graphene [37, 38]. We emphasize that the results

reported here for PE are carried out in a regime in which there is no significant change in P-P

bonding under finite κ. To further confirm this point we have compared the in-plane elastic

properties of the NT wall with those computed for the flat lattice, which are summarized

in Table 1. Our comparison focused on the deformations along the preferential a and b

directions, where energy scans revealed that the NT elongation and twist deformations are

uncoupled. For example, the parabolic energy dependences of Figs. 2a and b are pure

stretching and shear energies, respectively. The resulting stretch and shear stiffness values

of 337 GPa Å and 311 GPa Å, respectively, are very close to the corresponding Ybh and Gh

of the flat layer (Table 1). Thus, the D(χ)-dependence reported here is due to the manner

in which the P atoms are bonded in the different allotrope layers the P-P bonding and not

to the significant curvature.

TABLE I: The principal bending moduli, in-plane stiffness and Poisson’s ratios of α, β, and γ PEs,

as obtained from the DFTB model [34]. In α and γ PEs, subscript a and b correspond to the

zig-zag and armchair directions, respectively.

Da Db Yah Ybh Gah νa νb

GPa Å3 GPa Å3 GPa Å GPa Å GPa Å

α: 1,311 524 791 333 312 0.73 0.31

β: 147 147 649 649 259 0.25 0.25

γ: 219 426 734 755 178 0.07 0.07

While β PE is isotropic, α and γ PEs present orthotropic symmetry with a and b being

the principal directions. An orthotropic plate requires four independent elastic moduli, i.e.,
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the Young’s moduli Ya and Yb, the shear modulus G, and the Poisson’s ratio νa. (Note that

νb = νaYb/Ya). For a broader view, Table 1 summarizes our elastic moduli calculations for

the flat α, β, and γ PEs. We note that the PE Young’s moduli are overall an order of

magnitude lower that graphene’s 4,300 GPa Å value [25, 40]. Nevertheless, α PE is less

flexible than graphene, which has a bending modulus of only 230 GPa Å3 [19].

In general, a plain stress (σc) applied along the C direction of an orthotropic plate leads

not only to layer extension (εc) along C and layer compression along the perpendicular

direction T (εt), but also to a shear deformation (εct). The stress-strain relation writes [35]
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The shear-strain coupling coefficients ηc and ηt vanish when χ = 0 or 90◦ [35]. The stretching

stiffness (Ych and Yth), shear (Gh) stiffness, and Poisson’s ratios (νc and νt) relate to the

surface elastic constants along the principal axes (Table 1) via closed form expressions [35].

Plots from these standard equations for the elastic constant along C are shown in Fig. 3b-d.

The plots for the stretching stiffness along T are 90◦ rotated with respect to those shown in

Fig. 3b, i.e. Ych(χ) = Yth(χ+ 90◦) [35].

Eq. (3) makes it transparent that h is not needed in order to describe the in-plane

deformation of PE. Defining h is nevertheless required in order to correlate the in-plane

elasticity with the out-of-plane bending deformations. To find h, we equate the bending

rigidity of the plate with the D found by direct OMD calculations, as

Ych
3

12(1− νtνc)
= D. (4)

The obtained h, displayed in Fig. 4a, are different from the interlayer spacing in BP. They

are physically meaningful, in the sense that the h values are not sub-atomic. The thickness

of β PE, h = 1.6 Å, is uniform. For α and γ PEs, h is χ-dependent, as

hα/Å = 3.8− 0.5 cos 2χ− 0.2 cos 4χ, (5a)

hγ/Å = 2.1− 0.4 cos 2χ+ 0.2 cos 4χ. (5b)

Thus, the differences in atomic bonding between α and γ are playing an important role in

defining h. We note in passing that while a κ-dependent orthotropic shell was proposed as
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FIG. 4: a) χ-dependence of h for α, β and γ PE. The black continuous line is h measured from

the atomic positions, Fig. 1a-c. b) χ-dependence of the circumferential and axial Young’s moduli

and of the shear modulus, for α PE.

the equivalent representation of chiral NTs [37], this is the first time when a χ-dependent

plate model is being developed to model 2D materials. To reach large curvatures (not

considered here), the current model should develop an additional κ-dependence.

We emphasize that given a bending direction χ, the proposed orthotropic plate models for

α and γ PEs still rely on four independent constants. The selection of the elastic constants

requires care, as the h(χ) dependence paradox leads to Yc(χ) 6= Yt(χ + 90◦). For example,

Fig. 4b plots the Yt, Yc, G obtained by dividing by h(χ) the surface value discussed before
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for α PE. It can be seen that Yt and Yc for α PE are not related by a 90◦ rotation, and

that Ga 6= Gb. Nevertheless, the orthotropic model is functional as long as Yt, Yc, G at a

particular χ are selected from the three separate graphs shown in Fig. 4b.

The impossibility of fitting our data by a unique h reflects the differences between the

classical continuum and the underlying molecular mechanics description. Indeed, the clas-

sical plate model assumes that the bending strain originates in the extension (compression)

of the continuum material above (under) the mid-plane. In PE, the bending strain is stored

in small bond length and angle changes upon roll-up, captured here by the changes in the

quantum interatomic matrix elements and repulsive potential [34]. A compelling example for

the decoupling between bending and in-plane stretching is provided by the χ-dependence of

Dγ and Y γh plotted in Figs. 3a and b. Along the principal directions, γ PE presents similar

resistance to stretching. However, it is twice as hard to bend along the b direction than

in the perpendicular a direction. In the former case, the roll-up mapping gives stretching

and compression of the surface P-P bonds, Fig. 1c. In the latter, the length of the surface

bonds remain unchanged; finite curvature is accommodated through bond length and angle

changes involving bonds connecting P atoms on the two surfaces. Although h measured

from the atomic positions is unique, χ-dependence of h is needed in order to correlate the

nanomechanics of bending and in-plane stretching. Interestingly, the h(χ) paradox leads to

the in-plane stretching contradiction captured by Fig. 4b.

Understanding how the mechanical behavior of materials deviates at the nanoscale from

the macroscopically established concepts [36] is an outstanding problem. Here we show

that in PE, this deviation is manifested in the χ-dependent h paradox. Nevertheless, the

developed orthotropic plate model is unambiguous. It can be broadly useful for developing

the strain- and ripple-[41] engineering of PE, and for designing PE kirigami [42]. More

broadly, the decoupling of in-plane and out-of-plane deformations identified here for PE is

likely generic to 2D structures made from layered or non-layered materials. This finding has

important implications for the future development of continuum idealization of 2D structures

as the commonly-accepted continuum models developed for bulk need to be adapted for

structures with atomic-scale thicknesses. The OMD calculations based on DFTB potentials

offer a robust way to predict the bending response needed to establish these continuum

idealizations.

Computations were carried out at the Minnesota Supercomputing Institute.
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