6 research outputs found

    53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination.

    Get PDF
    53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.We thank Anthony Tubbs for comments on the paper; Jennifer Mehalko and Dom Esposito (Protein Expression Laboratory, Frederick National Laboratory for Cancer Research) for transgenic constructs; Karim Baktiar, Diana Haines, and Elijah Edmonson (Pathology/Histotechnology Laboratory, Frederick National Laboratory for Cancer Research) for rodent necropsy, pathology analysis, and imaging; Joseph Kalen and Nimit Patel (Small Animal Imaging Program, Frederick National Laboratory for Cancer Research) for X-ray computed tomography (CT) scan imaging; Jennifer Wise and Kelly Smith for assistance with animal work; Davide Robbiani and Kai Ge for antibodies; Dan Durocher for shieldin constructs; David Goldstein and the CCR Genomics core for sequencing support; and Neil Johnson for discussions. Research in the J.M.S. laboratory is supported by NIH grant R01CA197506. Research in the N.M. laboratory is supported by NIH grant R01 227001. The A.N. laboratory is supported by the Intramural Research Program of the NIH, an Ellison Medical Foundation Senior Scholar in Aging Award (AG-SS-2633-11), the Department of Defense Idea Expansion (W81XWH-15-2-006) and Breakthrough (W81XWH-16-1-599) Awards, the Alex's Lemonade Stand Foundation Award, and an NIH Intramural FLEX Award.S

    Biochemical and cellular characteristics of the

    No full text
    TREX2 is an autonomous nonprocessive 3 0! 5 0 exonuclease, suggesting that it maintains genome integrity. To investigate TREX2’s biochemical and cellular properties, we show that endogenous TREX2 is expressed widely in mouse tissues and human cell lines. Unexpectedly, endogenous human TREX2 is predominantly expressed as a 30-kDa protein (not 26 kDa, as previously believed), which is likely encoded by longer isoforms (TREX2 L1 and/or TREX2 L2) that possess similar capacity for selfassociation, DNA binding and catalytic activity. Site-directed mutagenesis analysis shows that the three functional activities of TREX2 are distinct, yet integrated. Mutation of amino acids putatively important for homodimerization significantly impairs both DNA binding and exonuclease activity, while mutation of amino acids (except R163) in the DNA binding and exonuclease domains affects their corresponding activities. Interestingly, however, DNA-binding domain mutations do not impact catalytic activity, while exonuclease domain mutations diminish DNA binding. To understand TREX2 cellular properties, we find endogenous TREX2 is down regulated during G2/M and nuclear TREX2 displays a punctate staining pattern. Furthermore, TREX2 knockdown reduces cell proliferation. Taken together, our results suggest that TREX2 plays an important function during DNA metabolism and cellular proliferation
    corecore