10 research outputs found

    Caractérisation de deux enzymes du métabolisme primaire chez Arabidopsis thaliana : la phosphoglycérate mutase et la phosphoglycolate phosphatase

    No full text
    Les plantes sont des organismes sessiles. Elles doivent rĂ©agir rapidement et efficacement aux stress biotiques et abiotiques qu’elles subissent. Pour cela, elles utilisent plusieurs niveaux de rĂ©gulation. L’un d’eux, rapide et rĂ©versible, consiste a effectuer des modifications post-traductionnelles (PTMs) sur ses enzymes. La PTM la plus rĂ©pandue est la phosphorylation protĂ©ique, qui intervient dans diverses voies du mĂ©tabolisme primaire. La glycolyse permet la production d’énergie (ATP) et de pouvoir rĂ©ducteur Ă  partir de glucose. La rĂ©gulation de la phosphoglycĂ©rate mutase d’Arabidopsis thaliana (AtiPGAM) a Ă©tĂ© Ă©tudiĂ©e grĂące Ă  une analyse d’un site de phosphorylation dans le but d’élucider le mĂ©canisme rĂ©actionnel. La photorespiration est un processus essentiel pour les organismes photosynthĂ©tiques. Ce cycle, initiĂ© par l’activitĂ© oxygĂ©nase de la ribulose-1,5-biphosphate carboxylase / oxygĂ©nase (RuBisCO), produit notamment une molĂ©cule de 2-phosphoglycolate (2-PG), toxique pour la plante. Le recyclage, couteux, du 2-PG par le cycle photorespiratoire se dĂ©roule dans quatre compartiments (chloroplaste, peroxysome, mitochondrie et cytosol). Sept des huit enzymes du cycle photorespiratoire sont phosphorylables. La phosphoglycolate phosphatase (AtPGLP1), premiĂšre enzyme du cycle, est associĂ©e Ă  quatre phosphosites. Des approches in vitro et in planta dĂ©veloppĂ©es chez A. thaliana ont permis d’acquĂ©rir de nouvelles donnĂ©es sur la rĂ©gulation post-traductionnelle de cette protĂ©ine, Ă  la fois par phosphorylation et par oxydo-rĂ©duction.As sessile organisms, plants need to rapidly and effectively react to environmental abiotic and biotic stresses. To do so, various regulatory mechanisms exist that include post-translational modifications (PTMs) of proteins. One of the most prevalent PTM is protein phosphorylation that has been shown to occur in many metabolic pathways. Glycolysis allows the production of energy (as ATP) and reducing power from glucose. In this context, the regulation of Arabidopsis thaliana phosphoglycerate mutase (AtiPGAM) was studied by analysing a phosphorylation site potentially involved in the reaction mechanism of this glycolytic enzyme. The photorespiratory cycle is a major metabolic pathway occurring in all photosynthetic organisms. It is initiated by the oxygenase activity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and leads to the production of toxic 2-phosphoglycolate (2-PG) molecules. The costly recycling of 2-PG by the photorespiratory cycle takes place in four different compartments (chloroplast, peroxisome, mitochondrion and cytosol). Seven of the eight core photorespiratory enzymes appear to be phosphorylated. Phosphoglycolate phosphatase (AtPGLP1), the first enzyme of the cycle that metabolizes 2-PG to glycolate, is associated with four phosphosites. In vivo and in vitro approaches using Arabidopsis thaliana have allowed us to obtain further insights into the post-translational regulation of this protein by protein phosphorylation and by oxidation-reduction

    Caractérisation de deux enzymes du métabolisme primaire chez Arabidopsis thaliana : la phosphoglycérate mutase et la phosphoglycolate phosphatase

    No full text
    As sessile organisms, plants need to rapidly and effectively react to environmental abiotic and biotic stresses. To do so, various regulatory mechanisms exist that include post-translational modifications (PTMs) of proteins. One of the most prevalent PTM is protein phosphorylation that has been shown to occur in many metabolic pathways. Glycolysis allows the production of energy (as ATP) and reducing power from glucose. In this context, the regulation of Arabidopsis thaliana phosphoglycerate mutase (AtiPGAM) was studied by analysing a phosphorylation site potentially involved in the reaction mechanism of this glycolytic enzyme. The photorespiratory cycle is a major metabolic pathway occurring in all photosynthetic organisms. It is initiated by the oxygenase activity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and leads to the production of toxic 2-phosphoglycolate (2-PG) molecules. The costly recycling of 2-PG by the photorespiratory cycle takes place in four different compartments (chloroplast, peroxisome, mitochondrion and cytosol). Seven of the eight core photorespiratory enzymes appear to be phosphorylated. Phosphoglycolate phosphatase (AtPGLP1), the first enzyme of the cycle that metabolizes 2-PG to glycolate, is associated with four phosphosites. In vivo and in vitro approaches using Arabidopsis thaliana have allowed us to obtain further insights into the post-translational regulation of this protein by protein phosphorylation and by oxidation-reduction.Les plantes sont des organismes sessiles. Elles doivent rĂ©agir rapidement et efficacement aux stress biotiques et abiotiques qu’elles subissent. Pour cela, elles utilisent plusieurs niveaux de rĂ©gulation. L’un d’eux, rapide et rĂ©versible, consiste a effectuer des modifications post-traductionnelles (PTMs) sur ses enzymes. La PTM la plus rĂ©pandue est la phosphorylation protĂ©ique, qui intervient dans diverses voies du mĂ©tabolisme primaire. La glycolyse permet la production d’énergie (ATP) et de pouvoir rĂ©ducteur Ă  partir de glucose. La rĂ©gulation de la phosphoglycĂ©rate mutase d’Arabidopsis thaliana (AtiPGAM) a Ă©tĂ© Ă©tudiĂ©e grĂące Ă  une analyse d’un site de phosphorylation dans le but d’élucider le mĂ©canisme rĂ©actionnel. La photorespiration est un processus essentiel pour les organismes photosynthĂ©tiques. Ce cycle, initiĂ© par l’activitĂ© oxygĂ©nase de la ribulose-1,5-biphosphate carboxylase / oxygĂ©nase (RuBisCO), produit notamment une molĂ©cule de 2-phosphoglycolate (2-PG), toxique pour la plante. Le recyclage, couteux, du 2-PG par le cycle photorespiratoire se dĂ©roule dans quatre compartiments (chloroplaste, peroxysome, mitochondrie et cytosol). Sept des huit enzymes du cycle photorespiratoire sont phosphorylables. La phosphoglycolate phosphatase (AtPGLP1), premiĂšre enzyme du cycle, est associĂ©e Ă  quatre phosphosites. Des approches in vitro et in planta dĂ©veloppĂ©es chez A. thaliana ont permis d’acquĂ©rir de nouvelles donnĂ©es sur la rĂ©gulation post-traductionnelle de cette protĂ©ine, Ă  la fois par phosphorylation et par oxydo-rĂ©duction

    Caractérisation de deux enzymes du métabolisme primaire chez Arabidopsis thaliana : la phosphoglycérate mutase et la phosphoglycolate phosphatase

    No full text
    As sessile organisms, plants need to rapidly and effectively react to environmental abiotic and biotic stresses. To do so, various regulatory mechanisms exist that include post-translational modifications (PTMs) of proteins. One of the most prevalent PTM is protein phosphorylation that has been shown to occur in many metabolic pathways. Glycolysis allows the production of energy (as ATP) and reducing power from glucose. In this context, the regulation of Arabidopsis thaliana phosphoglycerate mutase (AtiPGAM) was studied by analysing a phosphorylation site potentially involved in the reaction mechanism of this glycolytic enzyme. The photorespiratory cycle is a major metabolic pathway occurring in all photosynthetic organisms. It is initiated by the oxygenase activity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and leads to the production of toxic 2-phosphoglycolate (2-PG) molecules. The costly recycling of 2-PG by the photorespiratory cycle takes place in four different compartments (chloroplast, peroxisome, mitochondrion and cytosol). Seven of the eight core photorespiratory enzymes appear to be phosphorylated. Phosphoglycolate phosphatase (AtPGLP1), the first enzyme of the cycle that metabolizes 2-PG to glycolate, is associated with four phosphosites. In vivo and in vitro approaches using Arabidopsis thaliana have allowed us to obtain further insights into the post-translational regulation of this protein by protein phosphorylation and by oxidation-reduction.Les plantes sont des organismes sessiles. Elles doivent rĂ©agir rapidement et efficacement aux stress biotiques et abiotiques qu’elles subissent. Pour cela, elles utilisent plusieurs niveaux de rĂ©gulation. L’un d’eux, rapide et rĂ©versible, consiste a effectuer des modifications post-traductionnelles (PTMs) sur ses enzymes. La PTM la plus rĂ©pandue est la phosphorylation protĂ©ique, qui intervient dans diverses voies du mĂ©tabolisme primaire. La glycolyse permet la production d’énergie (ATP) et de pouvoir rĂ©ducteur Ă  partir de glucose. La rĂ©gulation de la phosphoglycĂ©rate mutase d’Arabidopsis thaliana (AtiPGAM) a Ă©tĂ© Ă©tudiĂ©e grĂące Ă  une analyse d’un site de phosphorylation dans le but d’élucider le mĂ©canisme rĂ©actionnel. La photorespiration est un processus essentiel pour les organismes photosynthĂ©tiques. Ce cycle, initiĂ© par l’activitĂ© oxygĂ©nase de la ribulose-1,5-biphosphate carboxylase / oxygĂ©nase (RuBisCO), produit notamment une molĂ©cule de 2-phosphoglycolate (2-PG), toxique pour la plante. Le recyclage, couteux, du 2-PG par le cycle photorespiratoire se dĂ©roule dans quatre compartiments (chloroplaste, peroxysome, mitochondrie et cytosol). Sept des huit enzymes du cycle photorespiratoire sont phosphorylables. La phosphoglycolate phosphatase (AtPGLP1), premiĂšre enzyme du cycle, est associĂ©e Ă  quatre phosphosites. Des approches in vitro et in planta dĂ©veloppĂ©es chez A. thaliana ont permis d’acquĂ©rir de nouvelles donnĂ©es sur la rĂ©gulation post-traductionnelle de cette protĂ©ine, Ă  la fois par phosphorylation et par oxydo-rĂ©duction

    NMpi_E_suaveolens_dataset1

    No full text
    Dataset1 of Erythrophleum suaveolens for NMpi software

    NMpi_E_suaveolens_dataset3

    No full text
    Dataset3 of Erythrophleum suaveolens for NMpi software

    NMpi_E_suaveolens_dataset2

    No full text
    Dataset2 of Erythrophleum suaveolens for NMpi software

    Arabidopsis thaliana 2,3‐bisphosphoglycerate‐independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation

    No full text
    International audiencePhosphoglycerate mutases (PGAMs) catalyse the reversible isomerisation of 3-phosphoglycerate and 2-phosphoglycerate, a step of glycolysis. PGAMs can be sub-divided into 2,3-biphosphoglycerate dependent (dPGAM) and independent (iPGAM) enzymes. In plants, phosphoglycerate isomerisation is carried out by cytosolic iPGAM. Despite its crucial role in catabolism, little is known about post-translational modifications of plant iPGAM. In Arabidopsis thaliana, phosphoproteomics analyses have previously identified a iPGAM phosphopeptide where serine 82 is phosphorylated. Here, we show that this phosphopeptide is less abundant in dark-adapted compared to illuminated Arabidopsis leaves. In silico comparison of iPGAM protein sequences and 3D-structural modelling of AtiPGAM2 based on non-plant iPGAM enzymes suggest a role for phosphorylated serine in the catalytic reaction mechanism. This is confirmed by the activity (or the lack thereof) of mutated recombinant Arabidopsis iPGAM2 forms, affected in different steps of the reaction mechanism. We thus propose that the occurrence of the S82-phosphopeptide reflects iPGAM2 steady-state catalysis. Based on this assumption, the metabolic consequences of a higher iPGAM activity in illuminated versus darkened leaves are discussed

    Data from: Seed and pollen dispersal distances in two African legume timber trees and their reproductive potential under selective logging

    No full text
    The natural regeneration of tree species depends on seed and pollen dispersal. To assess if limited dispersal could be critical for the sustainability of selective logging practices, we performed parentage analyses in two Central African legume canopy species displaying contrasted floral and fruit traits: Distemonanthus benthamianus and Erythrophleum suaveolens. We also developed new tools linking forward dispersal kernels with backward migration rates to better characterize long-distance dispersal. Much longer pollen dispersal in D. benthamianus (mean distance dp=700m, mp=52% immigration rate in 6 km2 plot, s=7% selfing rate) than in E. suaveolens (dp=294m, mp=22% in 2 km2 plot, s=20%) might reflect different insect pollinators. At a local scale, secondary seed dispersal by vertebrates led to larger seed dispersal distances in the barochorous E. suaveolens (ds=175m) than in the wind-dispersed D. benthamianus (ds=71m). Yet, seed dispersal appeared much more fat-tailed in the latter species (15-25% seeds dispersing >500m), putatively due to storm winds (papery pods). The reproductive success was correlated to trunk diameter in E. suaveolens and crown dominance in D. benthamianus. Contrary to D. benthamianus, E. suaveolens underwent significant assortative mating, increasing further the already high inbreeding of its juveniles due to selfing, which seems offset by strong inbreeding depression. To achieve sustainable exploitation, seed and pollen dispersal distances did not appear limiting, but the natural regeneration of E. suaveolens might become insufficient if all trees above the minimum legal cutting diameter were exploited. This highlights the importance of assessing the diameter structure of reproductive trees for logged species

    Genotypes (9 microsatellites) and coordinates of individuals (adults, seedlings, seeds) used in the study

    No full text
    Column A: Individual ID; Colum B: Country of origin; Colum C: cohort of the individual (adult, seedling, seed); Columns D and E: coordinates of the individuals (degree decimals); Colmums F to W: genotypes of the individuals at the 9 nuclear SSR (23, 4, 3, 18, 14, 6, 17, 7 and 1)
    corecore