50 research outputs found

    Effect of crystallographic orientation on the pitting corrosion resistance of laser surface melted AISI 304L austenitic stainless steel

    Get PDF
    The localized corrosion behavior of laser surface melted 304L austenitic stainless steel was studied by potentiodynamic polarization test. The extent of improvement in corrosion resistance was governed by the preferred orientation and the percentage of delta ferrite present on the surface of the laser melted sample. It was established by orientation imaging microscopy that the highest pitting potential value was obtained when grains were oriented in the most close- packed [101] direction compared to the random distribution of the base metal and other laser surface melted samples oriented in [001] direction. The sample with lower percentage of ferrite had good pitting resistance

    Response of nutrient management practices through organic substances on rice var. GR-11 in North Konkan Coastal zone of Maharashtra

    Full text link
    The management of soil organic matter is crucial to maintain a productive organic farming system. No one source of nutrient usually fulfills to maintain productivity and quality control in organic system.In addition, the inputs to supplement nutrient availability are often not uniform presenting additional challenges in meeting the nutrient requirements of crops in organic system.With this concept, a field experiment was conducted at the research farm of ASPEE Agricultural Research and Development Foundation, Tansa Farm, At Nare, Taluka Wada, Dist. Palghar, Maharashtra, during Kharif 2016-17 in rice.Different treatments comprising organic amendments such as Azotobacter, Banana Pseudostem sap 2%, Vermiwash 2% and Panchgavya 2% each applied alone or in all possible combinations were tried in organic crop production.These treatments were compared with absolute control (No biofertilizer+ No Spray). Recommended dose of chemical fertilizer 100:50:50 kg NPK ha-1. A Rice variety ‘GR-11\u27 was taken.Results revealed a significant enhancement in grain yield of rice over absolute control due to the application of different organic amendments applied alone or in combinations. Rice grain yield increased by 35.5% over absolute control when organic amendments viz., Seedling deep in Azotobacter + Vermiwash 2% + Banana Pseudostem Sap 2% were applied together.The rice grain yield (5.7 t ha-1) obtained under combined application of above three organic amendments was at par with the yield recorded under seedling deep in Azotobacter + Vermiwash 2% + Panchgavya 2%.An interesting observation recorded was that there was no serious attack of any insects pest or disease in organically grown crop.The study revealed that addition of four organic amendments viz. seedling deep in Azotobacter, vermiwash 2%, Panchgavya 2% and Banana Pseudostem Sap 2% could give the optimum yield of organic rice var. GR-11

    Microwave Hydrothermal Carbonization of Rice Straw: Optimization of Process Parameters and Upgrading of Chemical, Fuel, Structural and Thermal Properties.

    Get PDF
    The process parameters of microwave-induced hydrothermal carbonization (MIHTC) play an important role on the hydrothermal chars (hydrochar) yield. The effect of reaction temperature, reaction time, particle size and biomass to water ratio was optimized for hydrochar yield by modeling using the central composite design (CCD). Further, the rice straw and hydrochar at optimum conditions have been characterized for energy, chemical, structural and thermal properties. The optimum condition for hydrochar synthesis was found to be at a 180 °C reaction temperature, a 20 min reaction time, a 1:15 weight per volume (w/v) biomass to water ratio and a 3 mm particle size, yielding 57.9% of hydrochar. The higher heating value (HHV), carbon content and fixed carbon values increased from 12.3 MJ/kg, 37.19% and 14.37% for rice straw to 17.6 MJ/kg, 48.8% and 35.4% for hydrochar. The porosity, crystallinity and thermal stability of the hydrochar were improved remarkably compared to rice straw after MIHTC. Two characteristic peaks from XRD were observed at 2? of 15° and 26°, whereas DTG peaks were observed at 50?150 °C and 300?350 °C for both the materials. Based on the results, it can be suggested that the hydrochar could be potentially used for adsorption, carbon sequestration, energy and agriculture applications

    Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers

    Get PDF
    Although several synthetic or xenobiotic nucleic acids (XNAs) have been shown to be viable genetic materials in vitro, major hurdles remain for their in vivo applications, particularly orthogonality. The availability of XNAs that do not interact with natural nucleic acids and are not affected by natural DNA processing enzymes, as well as specialized XNA processing enzymes that do not interact with natural nucleic acids, is essential. Here, we report 3′–2′ phosphonomethyl-threosyl nucleic acid (tPhoNA) as a novel XNA genetic material and a prime candidate for in vivo XNA applications. We established routes for the chemical synthesis of phosphonate nucleic acids and phosphorylated monomeric building blocks, and we demonstrated that DNA duplexes were destabilized upon replacement with tPhoNA. We engineered a novel tPhoNA synthetase enzyme and, with a previously reported XNA reverse transcriptase, demonstrated that tPhoNA is a viable genetic material (with an aggregate error rate of approximately 17 × 10–3 per base) compatible with the isolation of functional XNAs. In vivo experiments to test tPhoNA orthogonality showed that the E. coli cellular machinery had only very limited potential to access genetic information in tPhoNA. Our work is the first report of a synthetic genetic material modified in both sugar and phosphate backbone moieties and represents a significant advance in biorthogonality toward the introduction of XNA systems in vivo

    Kinetic analysis of N-alkylaryl carboxamide hexitol nucleotides as substrates for evolved polymerases

    Get PDF
    Six 1′,5′-anhydrohexitol uridine triphosphates were synthesized with aromatic substitutions appended via a carboxamide linker to the 5-position of their bases. An improved method for obtaining such 5-substituted hexitol nucleosides and nucleotides is described. The incorporation profile of the nucleotide analogues into a DNA duplex overhang using recently evolved XNA polymerases is compared. Long, mixed HNA sequences featuring the base modifications are generated. The apparent binding affinity of four of the nucleotides to the enzyme, the rate of the chemical step and of product release, plus the specificity constant for the incorporation of these modified nucleotides into a DNA duplex overhang using the HNA polymerase T6G12_I521L are determined via pre-steady-state kinetics. HNA polymers displaying aromatic functional groups could have significant impact on the isolation of stable and high-affinity binders and catalysts, or on the design of nanomaterials

    AUDIO COMPRESSION USING WAVELET TRANSFORM

    No full text
    Audio Compression is one of the basic technologies of the modern telecommunication age. Compression is the technique to convert high input data stream into smaller size. Audio coding gives us the digital form of audio with as few bits as possible and also maintains the quality. the reduction in bit rates conserve bandwidth .Audio coding is used in various applications such as digital broadcasting ,high quality audio for satellite transmission , internet audio or music database where the high quality audio signals bit rate is reduced without compromising the quality of the signal. The technology proposed to achieve the design and implementation of audio compression using discrete wavelet transform technique. The efficiency performance of the audio encoding methods has been measured using compression ratio as well as peak signal to noise (PSNR) ratio, SNR

    Oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over nanogold supported on TiO2 and other transition and rare-earth metal oxides

    No full text
    Liquid-phase oxidation of benzyl alcohol to benzaldehyde by tertiary butyl hydroperoxide (at 95 °C) over nanogold supported on TiO2 and other transition-metal oxides (viz, MnO2, Fe2O3, CoOx, NiO, CuO, ZnO, and ZrO2) or rare-earth oxides (viz, La2O3, Sm2O3, Eu2O3, and Yb2O3) by the homogeneous deposition-precipitation (HDP) method has been investigated. The Au/TiO2 catalyst, prepared using the HDP method, showed high activity and selectivity in the reaction. The ZrO2-supported nanogold catalyst (HDP) also showed very good performance. The Au/TiO2 catalyst that was prepared using the deposition-precipitation (DP) method, however, showed poor catalytic activity, mostly because of its much-lower gold loading and/or lower Au3+/ Au0 ratio. Irrespective of the catalyst preparation method, the catalytic activity increased as the gold loading increased. The gold deposition method strongly influenced the amount of gold that was deposited on TiO2, the gold particle size distribution, and also the surface Au3+/Au0 ratio; using the HDP method, the gold deposition was much larger, the gold particle size was smaller, the gold particle size distribution was much narrower, and the Au3+/Au0 ratio was higher. Both the metallic and ionic gold species (Au0 and Au3+) are present in the Au/TiO2 catalyst. However, the Au3+ species are mostly responsible for the high catalytic activity in the oxidation process

    Audio Compression Using Wavelet Transform

    Full text link
    Audio Compression is one of the basic technologies of the modern telecommunication age. Compression is the technique to convert high input data stream into smaller size. Audio coding gives us the digital form of audio with as few bits as possible and also maintains the quality. the reduction in bit rates conserve bandwidth .Audio coding is used in various applications such as digital broadcasting ,high quality audio for satellite transmission , internet audio or music database where the high quality audio signals bit rate is reduced without compromising the quality of the signal. The technology proposed to achieve the design and implementation of audio compression using discrete wavelet transform technique. The efficiency performance of the audio encoding methods has been measured using compression ratio as well as peak signal to noise (PSNR) ratio, SNR

    Mesoporous, ligand free Cu-Fe solid catalyst mediated CS cross coupling of thiols with aryl halides

    No full text
    Solid catalyst derived from Cu-Fe hydrotalcite was demonstrated to be a novel, ligandless, efficient and environmentally greener catalyst for the synthesis of diaryl sulfurs from the C-S cross coupling reaction of substituted thiols with different aryl halides. This catalyst has shown higher product yield in the presence of dimethylformamide (as a solvent) and K2CO 3 (as a base) at 120 C. Influence of different solvents and bases on the product yield has also been investigated. The catalyst can be easily separated from the reaction mixture, simply by filtration and reused several times without a significant loss of its activity. The catalyst has been fully characterized for its surface and bulk properties and the mesoporous CuO:Fe 2O3 phase was attributed for its catalytic activity towards S-arylation reactions

    Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acids over gold nano-particles supported on MgO (or CaO) and other metal oxides

    No full text
    Gold nano-particles-supported alkaline earth metal oxides, particularly MgO or CaO, show high catalytic activity in the Suzuki-Miyaura cross-coupling reaction in the presence of K2CO3 and DMF (as a solvent). The catalytic activity is strongly influenced by the nature or type of metal oxide support (viz. alkaline earth oxide, Group IIIA metal oxide, transition metal oxide, or rare earth oxide actinide oxide). It is also strongly influenced by the nature of aryl halide (aryl iodide, bromide, chloride, or fluoride), amount of K2CO3 in the reaction mixture and catalyst calcination temperature. Influence of reaction parameters viz. temperature and time and different substituents in aryl halides and/or phenylboronic acids on the biphenyl product yield in the reaction over Au/MgO catalyst has also been investigated. The catalyst showed excellent reusability in the reaction. Moreover, it is ligand-free and also has much lower cost than the commonly used homogeneous and heterogeneous Pd catalysts
    corecore