4,139 research outputs found

    Hilbert-Post completeness for the state and the exception effects

    Get PDF
    In this paper, we present a novel framework for studying the syntactic completeness of computational effects and we apply it to the exception effect. When applied to the states effect, our framework can be seen as a generalization of Pretnar's work on this subject. We first introduce a relative notion of Hilbert-Post completeness, well-suited to the composition of effects. Then we prove that the exception effect is relatively Hilbert-Post complete, as well as the "core" language which may be used for implementing it; these proofs have been formalized and checked with the proof assistant Coq.Comment: Siegfried Rump (Hamburg University of Technology), Chee Yap (Courant Institute, NYU). Sixth International Conference on Mathematical Aspects of Computer and Information Sciences , Nov 2015, Berlin, Germany. 2015, LNC

    Electrical and Structural Characterization of Web Dendrite Crystals

    Get PDF
    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs

    A library of near-infrared integral field spectra of young M-L dwarfs

    Full text link
    We present a library of near-infrared (1.1-2.45 microns) medium-resolution (R~1500-2000) integral field spectra of 15 young M6-L0 dwarfs, composed of companions with known ages and of isolated objects. We use it to (re)derive the NIR spectral types, luminosities and physical parameters of the targets, and to test (BT-SETTL, DRIFT-PHOENIX) atmospheric models. We derive infrared spectral types L0+-1, L0+-1, M9.5+-0.5, M9.5+-0.5, M9.25+-0.25, M8+0.5-0.75, and M8.5+-0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B, DH Tau B, CT Cha b, and HR7329B, respectively. BT-SETTL and DRIFT-PHOENIX models yield close Teff and log g estimates for each sources. The models seem to evidence a 600-300+600 K drop of the effective temperature at the M-L transition. Assuming the former temperatures are correct, we derive new mass estimates which confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4, OTS 44, and Cha1109 lay inside or at the boundary of the planetary mass range. We combine the empirical luminosities of the M9.5-L0 sources to the Teff to derive semi-empirical radii estimates that do not match "hot-start" evolutionary models predictions at 1-3 Myr. We use complementary data to demonstrate that atmospheric models are able to reproduce the combined optical and infrared spectral energy distribution, together with the near-infrared spectra of these sources simultaneously. But the models still fail to represent the dominant features in the optical. This issue casts doubts on the ability of these models to predict correct effective temperatures from near-infrared spectra alone. We advocate the use of photometric and spectroscopic data covering a broad range of wavelengths to study the properties of very low mass young companions to be detected with the planet imagers (Subaru/SCExAO, LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).Comment: 27 pages, 14 tables, 19 figures, accepted for publication in Astronomy & Astrophysic

    Type II Shocks Characteristics: Comparison with associated CMEs and Flares

    Full text link
    A number of metric (100-650 MHz) typeII bursts was recorded by the ARTEMIS-IV radiospectrograph in the 1998-2000 period; the sample includes both CME driven shocks and shocks originating from flare blasts. We study their characteristics in comparison with characteristics of associated CMEs and flares.Comment: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, Volume 848, pp. 238-242 (2006

    Hyper-Raman scattering analysis of the vibrations in vitreous boron oxide

    Full text link
    Hyper-Raman scattering has been measured on vitreous boron oxide, vv-B2_2O3_3. This spectroscopy, complemented with Raman scattering and infrared absorption, reveals the full set of vibrations that can be observed with light. A mode analysis is performed based on the local D3h_{3h} symmetry of BO3_3 triangles and B3_3O3_3 boroxol rings. The results show that in vv-B2_2O3_3 the main spectral components can be succesfully assigned using this relatively simple model. In particular, it can be shown that the hyper-Raman boson peak arises from external modes that correspond mainly to librational motions of rigid boroxol rings.Comment: 13 pages, 11 figures, 2 table

    Type II and IV radio bursts in the active period October-November 2003

    Full text link
    In this report we present the Type II and IV radio bursts observed and analyzed by the radio spectrograph ARTEMIS IV1, in the 650-20MHz frequency range, during the active period October-November 2003. These bursts exhibit very rich fine structures such fibers, pulsations and zebra patterns which is associated with certain characteristics of the associated solar flares and CMEs.Comment: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, Volume 848, pp. 199-206 (2006

    Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study

    Get PDF
    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO

    Ten Years of the Solar Radiospectrograph ARTEMIS-IV

    Full text link
    The Solar Radiospectrograph of the University of Athens (ARTEMIS-IV) is in operation at the Thermopylae Satellite Communication Station since 1996. The observations extend from the base of the Solar Corona (650 MHz) to about 2 Solar Radii (20 MHz) with time resolution 1/10-1/100 sec. The instruments recordings, being in the form of dynamic spectra, measure radio flux as a function of height in the corona; our observations are combined with spatial data from the Nancay Radioheliograph whenever the need for 3D positional information arises. The ARTEMIS-IV contribution in the study of solar radio bursts is two fold- Firstly, in investigating new spectral characteristics since its high sampling rate facilitates the study of fine structures in radio events. On the other hand it is used in studying the association of solar bursts with interplanetary phenomena because of its extended frequency range which is, furthermore, complementary to the range of the WIND/WAVES receivers and the observations may be readily combined. This reports serves as a brief account of this operation. Joint observations with STEREO/WAVES and LOFAR low frequency receivers are envisaged in the future
    corecore