25 research outputs found

    Entry-competent-replication-abortive African horse sickness virus strains elicit robust immunity in ponies against all serotypes

    Get PDF
    African horse sickness virus (AHSV) is an Orbivirus within the Reoviridae family, spread by Culicoides species of midges, which infects equids with high mortality, particularly in horses and has a considerable impact on the equine industry. In order to control the disease, we previously described Entry Competent Replication Abortive (ECRA) virus strains for each of the nine distinct AHSV serotypes and demonstrated their potential as vaccines, first in type I interferon receptor (IFNAR-/-) knockout mice, and then in ponies. In this report we have investigated whether or not a combination ECRA vaccine comprising nine vaccine strains as two different cocktails is as efficient in ponies and the duration of the immunity triggered by ECRA vaccines. In one study, a group of ponies were vaccinated with a cocktail of 4 vaccine strains, followed by a vaccination of the remaining 5 vaccine strains, mimicking the current live attenuated vaccine regimen. In the second study, ponies were vaccinated with a single ECRA-AHSV strain and monitored for 6 months. The first group of ponies developed neutralising antibody responses against all 9 serotypes, indicating that no cross-serotype interference occurred, while the second group developed robust neutralising antibody responses against the single serotype that were sustained at the same level throughout a 6-month study. The results support our previous data and further validate ECRA vaccines as a safe and efficacious replacement of current live vaccines

    Infestation of small seabirds by Ornithodoros maritimus ticks : Effects on chick body condition, reproduction and associated infectious agents

    Get PDF
    Funding This Project was partially funded by the Govern Balear (Acciones Especiales, AAEE031/2017) and the Spanish Ministry of Innovation and Universities (RESET, ref: CGL2017-85210-P). ASA was funded by the Spanish Ministry of Innovation and Universities Innovation and Universities, the Agencia Estatal de InvestigaciĂłn and the European Social Found (RYC-2017- 22796). Data accessibility Data will be available via the Spanish National Research Council data repository. Sanz-Aguilar, A., Payo-Payo, A., Igual, J. M., Rotger, A., Viñas Torres, M., Picorelli, V., 2019. Storm petrel data sets. https://doi.org/10.20350/digitalCSIC/. Declaration of Competing Interest The authors declare no conflicts of interest. Acknowledgements We thank Esteban Cardona, Oliver MartĂ­nez, RaĂŒl Luna, Toni Avila, Esther LĂłpez MarĂ­n, Miquel Mas, Enric Real y Santiago de la Vega for their help and support on the colony monitoring. Balearic Islands Government, Sant Josep City Hall, COFIB and FundaciĂłn Balearia for their logistic support. Ethical statement This study was authorized by the Reserves des VedrĂ  es Vedranell i els illots de Ponent, Balearic Government. All aspects of the study were performed according to guidelines established for the ethical treatment of animals and complied with current Spanish regulations. The collection of ticks was authorized by the Balearic Government (Reference: CAP 21/2018).Peer reviewedPostprin

    Different viral genes modulate virulence in model mammal hosts and Culex pipiens vector competence in Mediterranean basin lineage 1 West Nile virus strains

    Get PDF
    West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3â€ČUTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3â€ČUTR regions are important in Cx. pipiens infection and possibly in vector competence

    Chicken skin virome analyzed by high throughput sequencing shows a composition highly different from human skin

    No full text
    Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics

    Viral diversity in swine intestinal mucus used for the manufacture of heparin as analyzed by high-throughput sequencing

    No full text
    International audienceHeparin is one of the main pharmaceutical products manufactured from raw animal material. In order to describe the viral burden associated with this raw material, we performed high-throughput sequencing (HTS) on mucus samples destined for heparin manufacturing, which were collected from European pigs. We identified Circoviridae and Parvoviridae members as the most prevalent contaminating viruses, together with viruses from the Picomaviridae, Astroviridae, Reoviridae, Caliciviridae, Adenoviridae, Birnaviridae, and Anelloviridae families. Putative new viral species were also identified. The load of several known or novel small non-enveloped viruses, which are particularly difficult to inactivate or eliminate during heparin processing, was quantified by qPCR. Analysis of the combined HTS and specific qPCR results will influence the refining and validation of inactivation procedures, as well as aiding in risk analysis of viral heparin contamination

    Unbiased analysis by high throughput sequencing of the viral diversity in fetal bovine serum and trypsin used in cell culture

    No full text
    International audienceFetal bovine serum (FBS) and trypsin are reagents used in cell culture and have been the source of viral contamination of pharmaceutical products. We performed high throughput sequencing (HTS) of two pools of commercial batches of FBS and three commercial batches of trypsin. Taxonomies were assigned by comparing sequences of contigs and singletons to the entire NCBI nucleic acid and protein databases. The same major viral species were evidenced between batches of a given reagent but the proportion of viral reads among total reads varied markedly between samples (from 0.002% to 22.7%). In FBS, the sequences found were mainly from bovine viral diarrhea virus (BVDV) 1 to 3 and bovine parvovirus 3 (BPV3). The BVDV sequences derived from FBS showed only minor discrepancies with primers generally used for the screening of BVDV. Viral sequences in trypsin were mainly from porcine circovirus type 2. Other known viral sequences at lower read counts and potential new viral species (bovine parvovirus and bovine pegivirus) were evidenced. The load of some known and new viruses detected by FITS could be quantified by qPCR. Results of HTS provide a framework for evaluating the pertinence of control measures including the design of PCRs, bioassays and inactivation procedures

    Direct contact and environmental contaminations are responsible for HEV transmission in pigs

    No full text
    International audienceHepatitis E virus (HEV) can cause enterically-transmitted hepatitis in humans. The zoonotic nature of Hepatitis E infections has been established in industrialized areas and domestic pigs are considered as the main reservoir. The dynamics of transmission in pig herds therefore needs to be understood to reduce the prevalence of viremic pigs at slaughter and prevent contaminated pig products from entering the food chain. An experimental trial was carried out to study the main characteristics of HEV transmission between orally inoculated pigs and naive animals. A mathematical model was used to investigate three transmission routes, namely direct contact between pigs and two environmental components to represent within-and between-group oro-fecal transmission. A large inter-individual variability was observed in response to infection with an average latent period lasting 6.9 days (5.8; 7.9) in inoculated animals and an average infectious period of 9.7 days (8.2; 11.2). Our results show that direct transmission alone, with a partial reproduction number of 1.41 (0.21; 3.02), can be considered as a factor of persistence of infection within a population. However, the quantity of virus present in the environment was found to play an essential role in the transmission process strongly influencing the probability of infection with a within pen transmission rate estimated to 2 . 10(-6)g ge(-1)d(-1)(1 . 10(-7); 7 . 10(-6)). Between-pen environmental transmission occurred to a lesser extent (transmission rate: 7 . 10(-8)g ge(-1)d(-1)(5 . 10(-9); 3 . 10(-7)) but could further generate a within-group process. The combination of these transmission routes could explain the persistence and high prevalence of HEV in pig populations

    Analysis by high throughput sequencing of Specific Pathogen Free eggs

    No full text
    Specific Pathogen Free (SPF) embryonated eggs are used for the production of many veterinary and human vaccines. We have used High Throughput Sequencing to screen allantoic fluids and embryos for the presence of encapsidated viral genomes and viral transcripts, respectively. SPF eggs from two different producers were tested. We evidenced sequences corresponding to known endogenous retroviruses and sequences of Avian Leukosis Virus, but no sequence that might suggest a productive infection of eggs with a virus even distant from known viruses. Our results strongly suggest that SPF eggs such as those used for this study represent a safe substrate for the production of vaccines
    corecore