51 research outputs found

    Challenges of dating quartz OSL samples with saturated grains:Lessons from single-grain analyses of low dose-rate samples from Victoria Falls, Zambia

    Get PDF
    A suite of samples from an extensive aeolian sandscarp near Victoria Falls, Zambia was used to explore several different methods of calculating optically stimulated luminescence (OSL) ages that account for the effects of saturated quartz grains. Beta dose rate heterogeneity and early OSL signal saturation of the samples exacerbate the impact that saturated grains have on the equivalent dose (De) values calculated. Saturated grains that cannot calculate De values are often rejected but the minimum burial dose information they contain can have a significant impact on a sample's average De value. This study compares multiple techniques for combining luminescence measurements that enables inclusion of this data and their sensitivity to a criterion that rejects grains with early OSL signal saturation. The methods tested are found to have different advantages and disadvantages, but reasonable agreement between the De values they calculate suggests that including data from saturated grains makes a more significant difference to De values calculated than the specific method used to combine the data

    Devising quality assurance procedures for assessment of legacy geochronological data relating to deglaciation of the last British-Irish Ice Sheet

    Get PDF
    This contribution documents the process of assessing the quality of data within a compilation of legacy geochronological data relating to the last British-Irish Ice Sheet, a task undertaken as part of a larger community-based project (BRITICE-CHRONO) that aims to improve understanding of the ice sheet's deglacial evolution. As accurate reconstructions depend on the quality of the available data, some form of assessment is needed of the reliability and suitability of each given age(s) in our dataset. We outline the background considerations that informed the quality assurance procedures devised given our specific research question. We describe criteria that have been used to make an objective assessment of the likelihood that an age is influenced by the technique specific sources of geological uncertainty. When these criteria were applied to an existing database of all geochronological data relating to the last British-Irish Ice Sheet they resulted in a significant reduction in data considered suitable for synthesis. The assessed data set was used to test a Bayesian approach to age modelling ice stream retreat and we outline our procedure that allows us to minimise the influence of potentially erroneous data and maximise the accuracy of the resultant age models

    Timing and pace of ice-sheet withdrawal across the marine-terrestrial transition west of Ireland during the last glaciation

    Get PDF
    Understanding the pace and drivers of marine-based ice-sheet retreat relies upon the integration of numerical ice-sheet models with observations from contemporary polar ice sheets and well-constrained palaeo-glaciological reconstructions. This paper provides a reconstruction of the retreat of the last British–Irish Ice Sheet (BIIS) from the Atlantic shelf west of Ireland during and following the Last Glacial Maximum (LGM). It uses marine-geophysical data and sediment cores dated by radiocarbon, combined with terrestrial cosmogenic nuclide and optically stimulated luminescence dating of onshore ice-marginal landforms, to reconstruct the timing and rate of ice-sheet retreat from the continental shelf and across the adjoining coastline of Ireland, thus including the switch from a marine- to a terrestrially-based ice-sheet margin. Seafloor bathymetric data in the form of moraines and grounding-zone wedges on the continental shelf record an extensive ice sheet west of Ireland during the LGM which advanced to the outer shelf. This interpretation is supported by the presence of dated subglacial tills and overridden glacimarine sediments from across the Porcupine Bank, a westwards extension of the Irish continental shelf. The ice sheet was grounded on the outer shelf at ~26.8 ka cal bp with initial retreat underway by 25.9 ka cal bp. Retreat was not a continuous process but was punctuated by marginal oscillations until ~24.3 ka cal bp. The ice sheet thereafter retreated to the mid-shelf where it formed a large grounding-zone complex at ~23.7 ka cal bp. This retreat occurred in a glacimarine environment. The Aran Islands on the inner continental shelf were ice-free by ~19.5 ka bp and the ice sheet had become largely terrestrially based by 17.3 ka bp. This suggests that the Aran Islands acted to stabilize and slow overall ice-sheet retreat once the BIIS margin had reached the inner shelf. Our results constrain the timing of initial retreat of the BIIS from the outer shelf west of Ireland to the period of minimum global eustatic sea level. Initial retreat was driven, at least in part, by glacio-isostatically induced, high relative sea level. Net rates of ice-sheet retreat across the shelf were slow (62–19 m a−1) and reduced (8 m a−1) as the ice sheet vacated the inner shelf and moved onshore. A picture therefore emerges of an extensive BIIS on the Atlantic shelf west of Ireland, in which early, oscillatory retreat was followed by slow episodic retreat which decelerated further as the ice margin became terrestrially based. More broadly, this demonstrates the importance of localized controls, in particular bed topography, on modulating the retreat of marine-based sectors of ice sheets

    Assessing whether a thermoluminescence peak at ∼100 °C in calcitic opercula can be used to monitor thermal reproducibility

    No full text
    The opercula of the gastropod Bithynia tentaculata is composed of calcite and exhibits three main thermoluminescence peaks at ∼100, 280 and 360 °C when heated at 0.5 °C.s-1. The two higher temperature peaks can be used for geological and archaeological dating, whilst the lower temperature peak has a lifetime of hours and is only seen after laboratory irradiation. This study explores whether this lower temperature TL peak can be used to assess the reproducibility of laboratory heating of opercula. As found in previous studies, the TL peak at ∼100 °C is seen to consist of at least two signals which have different lifetimes at room temperature. By fixing the interval between irradiation and measurement of the TL signal, the impact of these different lifetimes on the temperature at which the TL peak occurs (Tm) can be reduced, and replicate measurements on a single operculum using the same radiation dose yield values of Tm within 1°C. Comparison of different opercula shows variation in Tm of 9 °C when heating at 5 °C.s-1, interpreted as primarily arising from variation in thermal lag between the hotplate and the different samples assessed. Reducing the heating rate to 0.5 °C.s-1 reduces the variation in Tm between opercula to 2 °C. Imaging the TL emission from opercula using an EMCCD shows spatial variation in heating, and also demonstrates the reduction in variability that can be achieved by using a slower heating rate. Thus, monitoring the position of the TL peak at ∼100 °C can be used to assess thermal reproducibility of TL measurements on calcitic opercula
    • …
    corecore