24 research outputs found

    All-or-none amyloid disassembly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species

    Get PDF
    11 pags., 5 figs.α-synuclein aggregation is present in Parkinson’s disease and other neuropathologies. Among the assemblies that populate the amyloid formation process, oligomers and short fibrils are the most cytotoxic. The human Hsc70-based disaggregase system can resolve α-synuclein fibrils, but its ability to target other toxic assemblies has not been studied. Here, we show that this chaperone system preferentially dis-aggregates toxic oligomers and short fibrils, while its activity against large, less toxic amyloids is severely impaired. Biochemical and kinetic characterization of the disassembly process reveals that this behavior is the result of an all-or-none abrupt solubilization of individual aggregates. High-speed atomic force microscopy explicitly shows that disassembly starts with the destabilization of the tips and rapidly progresses to completion through protofilament unzipping and depolymerization without accumulation of harmful oligomeric intermediates. Our data provide molecular insights into the selective processing of toxic amyloids, which is critical to identify potential therapeutic targets against increasingly prevalent neurodegenerative disorders.This work was supported by MCI/AEI/FEDER, UE (Grants PGC2018-101282-B-I00 to J.M.G.V, PGC2018-096335-B-100 to N.C., and PID2019-111068GB-I00 to A.M.), MINECO/FEDER, UE (Grants RYC-2012-12068 and BFU2015-64119-P to N.C.), and by the Basque Government (Grant IT1201-19 to A.M. and A.P.). A.C. also acknowledges funding from MCIU, PID2019-111096GA-I00; MCIU/AEI/FEDER MINECOG19/P66 , RYC2018-024686-I, and Basque Government T1270-19. L.S. acknowledges support from the University of California, Davis. A.F. thanks a predoctoral fellowship from the Basque Government. The technical and human support provided by the microscopy service of SGIker (UPV/EHU/ERDF, EU) is acknowledged. We thank J. M. Valpuesta and J. Cuellar for the visualization of α-syn oligomers by E

    Mechanical behavior of 3d printed poly(ethylene glycol) diacrylate hydrogels in hydrated conditions investigated using atomic force microscopy

    Get PDF
    Three-dimensional (3D) printed hydrogels fabricated using light processing techniques are poised to replace conventional processing methods used in tissue engineering and organ-on-chip devices. An intrinsic potential problem remains related to structural heterogeneity translated in the degree of cross-linking of the printed layers. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were used to fabricate both 3D printed multilayer and control monolithic samples, which were then analyzed using atomic force microscopy (AFM) to assess their nanomechanical properties. The fabrication of the hydrogel samples involved layer-by-layer (LbL) projection lithography and bulk cross-linking processes. We evaluated the nanomechanical properties of both hydrogel types in a hydrated environment using the elastic modulus (E) as a measure to gain insight into their mechanical properties. We observed that E increases by 4-fold from 2.8 to 11.9 kPa transitioning from bottom to the top of a single printed layer in a multilayer sample. Such variations could not be seen in control monolithic sample. The variation within the printed layers is ascribed to heterogeneities caused by the photo-cross-linking process. This behavior was rationalized by spatial variation of the polymer cross-link density related to variations of light absorption within the layers attributed to spatial decay of light intensity during the photo-cross-linking process. More importantly, we observed a significant 44% increase in E, from 9.1 to 13.1 kPa, as the indentation advanced from the bottom to the top of the multilayer sample. This finding implies that mechanical heterogeneity is present throughout the entire structure, rather than being limited to each layer individually. These findings are critical for design, fabrication, and application engineers intending to use 3D printed multilayer PEGDA hydrogels for in vitro tissue engineering and organ-on-chip devices

    Mechanisms involved in sodium uptake activation by the Tumor Necrosis Factor-derived TIP peptide

    No full text
    The Tumor Necrosis Factor derived-TIP peptide is a small 17 amino acids cyclic peptide with lectin-like activity, that possesses several therapeutically relevant biological activities, among which is activation of alveolar liquid clearance in both healthy and injured lungs in vivo. Accumulation of fluid in the lungs? alveoli and interstitial spaces is a life-threatening condition called pulmonary edema. The mortality rate due permeability pulmonary edema, accompanied by a dysfunction of the alveolar/capillary barrier, is high because no effective treatment lacking side effects exists nowadays. It is known that the TIP peptide is able to activate vectorial Na+ transport ? which mediates lung liquid clearance. However, the mechanism of action of remains elusive. The aim of this thesis was to investigate the initial steps of interaction between the TIP peptide and airway epithelial cells. Numerous novel methods and single-molecule techniques were used to unravel: (i) how the TIP peptide interacts with the molecules on the apical side of the lung epithelial cells; (ii) whether the TIP peptide need to be internalized inside of the cells to trigger its effects; (iii) the nature of the interaction between the TIP peptide and its putative receptor(s); (iv) the putative receptor(s) for the TIP peptide on the apical surface of the lung epithelial cells

    Avidin-Conjugated Nanofibrillar Cellulose Hydrogel Functionalized with Biotinylated Fibronectin and Vitronectin Promotes 3D Culture of Fibroblasts

    Get PDF
    The future success of physiologically relevant three-dimensional (3D) cell/tissue models is dependent on the development of functional biomaterials, which can provide a well-defined 3D environment instructing cellular behavior. To establish a platform to produce tailored hydrogels, we conjugated avidin (Avd) to anionic nanofibrillar cellulose (aNFC) and demonstrated the use of the resulting Avd-NFC hydrogel for 3D cell culture, where Avd-NFC allows easy functionalization via biotinylated molecules. Avidin was successfully conjugated to nanocellulose and remained functional, as demonstrated by electrophoresis and titration with fluorescent biotin. Rheological analysis indicated that Avd-NFC retained shear-thinning and gel-forming properties. Topological characterization using AFM revealed the preserved fiber structure and confirmed the binding of biotinylated vitronectin (B-VN) on the fiber surface. The 3D cell culture experiments with mouse embryonic fibroblasts demonstrated the performance of Avd-NFC hydrogels functionalized with biotinylated fibronectin (B-FN) and B-VN. Cells cultured in Avd-NFC hydrogels functionalized with B-FN or B-VN formed matured integrin-mediated adhesions, indicated by phosphorylated focal adhesion kinase. We observed significantly higher cell proliferation rates when biotinylated proteins were bound to the Avd-NFC hydrogel compared to cells cultured in Avd-NFC alone, indicating the importance of the presence of adhesive sites for fibroblasts. The versatile Avd-NFC allows the easy functionalization of hydrogels with virtually any biotinylated molecule and may become widely utilized in 3D cell/tissue culture applications.publishedVersionPeer reviewe

    Double mutation in photosystem II reaction centers and elevated CO2 grant thermotolerance to mesophilic cyanobacterium.

    Get PDF
    Photosynthetic biomass production rapidly declines in mesophilic cyanobacteria grown above their physiological temperatures largely due to the imbalance between degradation and repair of the D1 protein subunit of the heat susceptible Photosystem II reaction centers (PSIIRC). Here we show that simultaneous replacement of two conserved residues in the D1 protein of the mesophilic Synechocystis sp. PCC 6803, by the analogue residues present in the thermophilic Thermosynechococcus elongatus, enables photosynthetic growth, extensive biomass production and markedly enhanced stability and repair rate of PSIIRC for seven days even at 43 °C but only at elevated CO(2) (1%). Under the same conditions, the Synechocystis control strain initially presented very slow growth followed by a decline after 3 days. Change in the thylakoid membrane lipids, namely the saturation of the fatty acids is observed upon incubation for the different strains, but only the double mutant shows a concomitant major change of the enthalpy and entropy for the light activated Q(A)(-)→Q(B) electron transfer, rendering them similar to those of the thermophilic strain. Following these findings, computational chemistry and protein dynamics simulations we propose that the D1 double mutation increases the folding stability of the PSIIRC at elevated temperatures. This, together with the decreased impairment of D1 protein repair under increased CO(2) concentrations result in the observed photothermal tolerance of the photosynthetic machinery in the double mutant

    Carotenoid Charge Transfer States and Their Role in Energy Transfer Processes in LH1–RC Complexes from Aerobic Anoxygenic Phototrophs

    No full text
    Light-harvesting complexes ensure necessary flow of excitation energy into photosynthetic reaction centers. In the present work, transient absorption measurements were performed on LH1–RC complexes isolated from two aerobic anoxygenic phototrophs (AAPs), <i>Roseobacter</i> sp. COL2P containing the carotenoid spheroidenone, and <i>Erythrobacter</i> sp. NAP1 which contains the carotenoids zeaxanthin and bacteriorubixanthinal. We show that the spectroscopic data from the LH1–RC complex of <i>Roseobacter</i> sp. COL2P are very similar to those previously reported for <i>Rhodobacter sphaeroides</i>, including the transient absorption spectrum originating from the intramolecular charge-transfer (ICT) state of spheroidenone. Although the ICT state is also populated in LH1–RC complexes of <i>Erythrobacter</i> sp. NAP1, its appearance is probably related to the polarity of the bacteriorubixanthinal environment rather than to the specific configuration of the carotenoid, which we hypothesize is responsible for populating the ICT state of spheroidenone in LH1–RC of <i>Roseobacter</i> sp. COL2P. The population of the ICT state enables efficient S<sub>1</sub>/ICT-to-bacteriochlorophyll (BChl) energy transfer which would otherwise be largely inhibited for spheroidenone and bacteriorubixanthinal due to their low energy S<sub>1</sub> states. In addition, the triplet states of these carotenoids appear well-tuned for efficient quenching of singlet oxygen or BChl-a triplets, which is of vital importance for oxygen-dependent organisms such as AAPs

    Data supporting: 'Mechanical Behavior of 3D Printed Poly(ethylene glycol) Diacrylate Hydrogels in Hydrated Conditions Investigated Using Atomic Force Microscopy'

    No full text
    1. File AFM-Lines: Raw files for all force-distance curves along with excel file summarizing all the indentions on a single line taken at different height on the surface of the hydrogel. 2. File AFM-Maps: Raw files for all force-distance curves along with excel file summarizing all the indentation maps taken at the middle section on the surface of the hydrogel. </p

    All-or-none amyloid disassembly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species

    No full text
    α-synuclein aggregation is present in Parkinson's disease and other neuropathologies. Among the assemblies that populate the amyloid formation process, oligomers and short fibrils are the most cytotoxic. The human Hsc70-based disaggregase system can resolve α-synuclein fibrils, but its ability to target other toxic assemblies has not been studied. Here, we show that this chaperone system preferentially disaggregates toxic oligomers and short fibrils, while its activity against large, less toxic amyloids is severely impaired. Biochemical and kinetic characterization of the disassembly process reveals that this behavior is the result of an all-or-none abrupt solubilization of individual aggregates. High-speed atomic force microscopy explicitly shows that disassembly starts with the destabilization of the tips and rapidly progresses to completion through protofilament unzipping and depolymerization without accumulation of harmful oligomeric intermediates. Our data provide molecular insights into the selective processing of toxic amyloids, which is critical to identify potential therapeutic targets against increasingly prevalent neurodegenerative disorders
    corecore