565 research outputs found

    Imagerie dans le cathétérisme des cardiopathies congénitales : place de l’échocardiographie 3D transthoracique

    Get PDF
    RésuméL’échocardiographie 3D transthoracique a longtemps été freinée dans son développement en raison de conditions techniques d’acquisition compliquées et de qualité d’images médiocres. L’avènement des sondes matricielles permet au 3D en devenant temps réel d’entrer dans la pratique clinique courante. Si la voie œsophagienne a permis au 3D de trouver ses lettres de noblesses par ses descriptions anatomiques uniques des valves et des septa, l’échocardiographie transthoracique peut désormais se décliner en modes 2D, Doppler et 3D. Ses applications dans la cardiologie congénitale et pédiatrique sont multiples : description anatomique précise des défauts septaux auriculaires et ventriculaires, classification des bicuspidies aortiques et analyse du mécanisme de sténose. Ainsi, l’échocardiographie 3D permet-elle de sélectionner de façon non invasive les patients, de guider et de juger du résultat d’un cathétérisme interventionnel. L’imagerie 3D est un excellent moyen de communication entre l’imageur et le cardiologue interventionnel mais aussi de délivrer des informations claires au patient et à la famille avant et après un cathétérisme.SummaryThree-dimensional echocardiography has improved dramatically due to technical advances in probe design and computer processing. The introduction of real time 3D echocardiography has led to its use in everyday clinical practice. Congenital heart disease demands a detailed understanding of the spatial relationships of cardiac structures to plan treatment. The introduction of new transthoracic 3D probes has extended the applications to real-time guidance of catheter procedures. Prominent among the cardiac lesions which have been studied are: atrial septal defects, ventricular septal defects and stenotic bicuspid aortic valves. Its values should be decisive in many congenital cardiac lesions requiring interventional catheterisation. 3D echocardiography is an easy way to communicate to the patient and its family about the pathology

    Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season

    Get PDF
    We present observations of tropospheric aerosol and water vapor transport over West Africa and the associated meteorological conditions during the AMMA SOP-0 dry season experiment, which was conducted in West Africa in January–February 2006. This study combines data from ultra-light aircraft (ULA)-based lidar, airborne in-situ aerosol and gas measurements, standard meteorological measurements, satellite-based aerosol measurements, airmass trajectories, and radiosonde measurements. At Niamey (13.5° N, 2.2° E) the prevailing surface wind (i.e. Harmattan) was from the northeast bringing dry dusty air from the Sahara desert. High concentrations of mineral dust aerosol were typically observed from the surface to 1.5 or 2 km associated with the Saharan airmasses. At higher altitudes the prevailing wind veered to the south or southeast bringing relatively warm and humid airmasses from the biomass burning regions to the Sahel (<10° N). These elevated layers had high concentrations of biomass burning aerosol and were typically observed between altitudes of 2–5 km. Meteorological analyses show these airmasses were advected upwards over the biomass burning regions through ascent in Inter-Tropical Discontinuity (ITD) zone. Aerosol vertical profiles obtained from the space-based lidar CALIOP onboard CALIPSO during January 2007 also showed the presence of dust particles (particle depolarization (δ)~30%, lidar Ångström exponent (<i>LAE</i>)<0, aerosol backscatter to extinction ratio (<i>BER</i>): 0.026~0.028 sr<sup>−1</sup>) at low levels (<1.5 km) and biomass burning smoke aerosol (δ<10%, <i>LAE</i>: 0.6~1.1, <i>BER</i>: 0.015~0.018 sr<sup>−1</sup>) between 2 and 5 km. CALIOP data indicated that these distinct continental dust and biomass burning aerosol layers likely mixed as they advected further south over the tropical Atlantic Ocean, as indicated an intermediate values of δ (10~17%), <i>LAE</i> (0.16~0.18) and <i>BER</i> (0.0021~0.0022 sr<sup>−1</sup>)

    Simultaneous observations of lower tropospheric continental aerosols with a ground-based, an airborne, and the spaceborne CALIOP lidar system

    Get PDF
    International audienceWe present an original experiment with multiple lidar systems operated simultaneously to study the capability of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the Cloud-Aerosol Lidar Pathfinder Satellite Observation (CALIPSO), to infer aerosol optical properties in the lower troposphere over a midlatitude continental site where the aerosol load is low to moderate. The experiment took place from 20 June to 10 July 2007 in southern France. The results are based on three case studies with measurements coincident to CALIOP observations: the first case study illustrates a large-scale pollution event with an aerosol optical thickness at 532 nm (τa532) of ∼0.25, and the two other case studies are devoted to background conditions due to aerosol scavenging by storms with τa532 <0.1. Our experimental approach involved ground-based and airborne lidar systems as well as Sun photometer measurements when the conditions of observation were favorable. Passive spaceborne instruments, namely the Spinning Enhanced Visible and Infrared Imager (SEVERI) and the Moderate-resolution Imaging Spectroradiometer (MODIS), are used to characterize the large-scale aerosol conditions. We show that complex topographical structures increase the complexity of the aerosol analysis in the planetary boundary layer by CALIOP when τa532 is lower than 0.1 because the number of available representative profiles is low to build a mean CALIOP profile with a good signal-to-noise ratio. In a comparison, the aerosol optical properties inferred from CALIOP and those deduced from the other active and passive remote sensing observations in the pollution plume are found to be in reasonable agreement. Level-2 aerosol products of CALIOP are consistent with our retrievals

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater

    Get PDF
    Abstract. This study reports the only recent characterization of two contrasted wet deposition events collected during the PEACETIME (ProcEss studies at the Air–sEa Interface after dust deposition in the MEditerranean Sea) cruise in the open Mediterranean Sea (Med Sea) and their impact on trace metal (TM) marine stocks. Rain samples were analysed for Al, 12 TMs (Co, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V and Zn) and nutrient (N, P, dissolved organic carbon) concentrations. The first rain sample collected in the Ionian Sea (Rain ION) was a typical regional background wet deposition event, whereas the second rain sample collected in the Algerian Basin (Rain FAST) was a Saharan dust wet deposition event. Even in the remote Med Sea, all background TM inputs presented an anthropogenic signature, except for Fe, Mn and Ti. The concentrations of TMs in the two rain samples were significantly lower compared to concentrations in rains collected at coastal sites reported in the literature, due to the decrease in anthropogenic emissions during the preceding decades. The atmospheric TM inputs were mainly dissolved forms, even in dusty Rain FAST. The TM stocks in the mixed layer (ML, 0–20 m) at the FAST station before and after the event showed that the atmospheric inputs were a significant supply of particulate TMs and dissolved Fe and Co for surface seawater. Even if the wet deposition delivers TMs mainly in soluble form, the post-deposition aerosol dissolution could to be a key additional pathway in the supply of dissolved TMs. At the scale of the western and central Mediterranean, the atmospheric inputs were of the same order of magnitude as ML stocks for dissolved Fe, Co and Zn, highlighting the role of the atmosphere in their biogeochemical cycles in the stratified Med Sea. In case of intense dust-rich wet deposition events, the role of atmospheric inputs as an external source was extended to dissolved Co, Fe, Mn, Pb and Zn. Our results suggest that the wet deposition constitutes only a source of some of dissolved TMs for Med Sea surface waters. The contribution of dry deposition to the atmospheric TM inputs needs to be investigated.</jats:p

    Common Promoter Elements in Odorant and Vomeronasal Receptor Genes

    Get PDF
    In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions
    corecore