6,010 research outputs found
Neural networks with small-world topology are optimal for encoding based on spatiotemporal patterns of spikes
Recommended from our members
Neural networks with small-world topology are optimal for encoding based on spatiotemporal patterns of spikes
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Time scale of entropic segregation of flexible polymers in confinement: Implications for chromosome segregation in filamentous bacteria
We report molecular dynamics simulations of the segregation of two
overlapping chains in cylindrical confinement. We find that the entropic
repulsion between the chains can be sufficiently strong to cause segregation on
a time scale that is short compared to the one for diffusion. This result
implies that entropic driving forces are sufficiently strong to cause rapid
bacterial chromosome segregation.Comment: Minor changes. Added some references, corrected the labels in figure
6 and reformatted in two columns. Also added reference to published version
in PR
Spin-polarized tunneling through randomly transparent magnetic junctions: Reentrant magnetoresistance approaching the Julliere limit
Electron conductance in planar magnetic tunnel junctions with long-range
barrier disorder is studied within Glauber-eikonal approximation enabling exact
disorder ensemble averaging by means of the Holtsmark-Markov method. This
allows us to address a hitherto unexplored regime of the tunneling
magnetoresistance effect characterized by the crossover from
momentum-conserving to random tunneling as a function of the defect
concentration. We demonstrate that such a crossover results in a reentrant
magnetoresistance: It goes through a pronounced minimum before reaching
disorder- and geometry-independent Julliere's value at high defect
concentrations.Comment: 7 pages, 5 figures, derivation of Eq. (39) added, errors in Ref. 7
correcte
Modelling and testing of long range battery electric vehicle performance
There are two significant issues facing road transport in the medium to long term: the depletion of cheap oil reserves and the need to reduce carbon emissions. A long term solution for passenger cars could be the introduction of battery electric vehicles (BEVs). However, one of the main problems associated with the current generation of BEVs is their short range relative to conventional internal combustion engine (ICE) cars.To investigate this issue, a long range battery electric vehicle, the UltraCommuter (UC), was constructed by the University of Waikato in partnership with HybridAuto Ltd. This paper describes the development, modelling and testing of the UC and its performance in the 2007 World Solar Challenge.<br /
Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions
Application of Bardeen's tunneling theory to magnetic tunnel junctions having
a general degree of atomic disorder reveals the close relationship between
magneto-conduction and voltage-driven pseudo-torque, as well as the thickness
dependence of tunnel-polarization factors. Among the results: 1) The torque
generally varies as sin theta at constant applied voltage. 2) Whenever
polarization factors are well defined, the voltage-driven torque on each moment
is uniquely proportional to the polarization factor of the other magnet. 3) At
finite applied voltage, this relation predicts significant voltage-asymmetry in
the torque. For one sign of voltage the torque remains substantial even when
the magnetoconductance is greatly diminished. 4) A broadly defined junction
model, called ideal middle, allows for atomic disorder within the magnets and
F/I interface regions. In this model, the spin dependence of a state-weighting
factor proportional to the sum over general state index of evaluated within the
(e.g. vacuum) barrier generalizes the local state density in previous theories
of the tunnel-polarization factor. 5) For small applied voltage,
tunnel-polarization factors remain legitimate up to first order in the inverse
thickness of the ideal middle. An algebraic formula describes the first-order
corrections to polarization factors in terms of newly defined lateral
auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few
notations and equations are changed, and references completed. No change in
results. 17 pages including 4 figure
Gel-Electrophoresis and Diffusion of Ring-Shaped DNA
A model for the motion of ring-shaped DNA in a gel is introduced and studied
by numerical simulations and a mean-field approximation. The ring motion is
mediated by finger-shaped loops (hernias) that move in an amoeba-like fashion
around the gel obstructions. This constitutes an extension of previous
reptation tube treatments. It is shown that tension is essential for describing
the dynamics in the presence of hernias. It is included in the model as long
range interactions over stretched DNA regions. The mobility of ring-shaped DNA
is found to saturate much as in the well-studied case of linear DNA.
Experiments in polymer gels, however, show that the mobility drops
exponentially with the DNA ring size. This is commonly attributed to
dangling-ends in the gel that can impale the ring. The predictions of the
present model are expected to apply to artificial 2D obstacle arrays (W.D.
Volkmuth, R.H. Austin, Nature 358,600 (1992)) which have no dangling-ends. In
the zero-field case an exact solution of the model steady-state is obtained,
and quantities such as the average ring size are calculated. An approximate
treatment of the ring dynamics is given, and the diffusion coefficient is
derived. The model is also discussed in the context of spontaneous symmetry
breaking in one dimension.Comment: 8 figures, LaTeX, Phys. Rev. E - in pres
Magnetic Diode Effect in Double Barrier Tunnel Junctions
A quantum statistical theory of spin-dependent tunneling through asymmetric
magnetic double barrier junctions is presented which describes ballistic
and diffuse tunneling by a single analytical expression. It is evidenced that
the key parameter for the transition between these two tunneling regimes is the
electron scattering. For these junctions a strong asymmetric behaviour in the
I-V characteristics and the tunnel magnetoresistance (TMR) is predicted which
can be controlled by an applied magnetic field. This phenomenon relates to the
quantum well states in the middle metallic layer. The corresponding resonances
in the current and the TMR are drastically phase shifted under positive and
negative voltage.Comment: 10 pages, 4 Postscript figures, submitted to Europhys. Let
A study of the stress wave factor technique for nondestructive evaluation of composite materials
The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes
Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch
The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread—the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes
- …
