3,027 research outputs found

    Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions

    Full text link
    Application of Bardeen's tunneling theory to magnetic tunnel junctions having a general degree of atomic disorder reveals the close relationship between magneto-conduction and voltage-driven pseudo-torque, as well as the thickness dependence of tunnel-polarization factors. Among the results: 1) The torque generally varies as sin theta at constant applied voltage. 2) Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely proportional to the polarization factor of the other magnet. 3) At finite applied voltage, this relation predicts significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even when the magnetoconductance is greatly diminished. 4) A broadly defined junction model, called ideal middle, allows for atomic disorder within the magnets and F/I interface regions. In this model, the spin dependence of a state-weighting factor proportional to the sum over general state index of evaluated within the (e.g. vacuum) barrier generalizes the local state density in previous theories of the tunnel-polarization factor. 5) For small applied voltage, tunnel-polarization factors remain legitimate up to first order in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to polarization factors in terms of newly defined lateral auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few notations and equations are changed, and references completed. No change in results. 17 pages including 4 figure

    Spin analog of the controlled Josephson charge current

    Full text link
    We propose a controlled Josephson spin current across the junction of two non-centrosymmetric superconductors like CePt_3Si. The Josephson spin current arises due to direction dependent tunneling matrix element and different momentum dependent phases of the triplet components of the gap function. Its modulation with the angle \xi between the noncentrosymmetric axes of two superconductors is proportional to \sin \xi. This particular dependence on \xi may find application of the proposed set-up in making a Josephson spin switch.Comment: 4 pages, 1 figure; title is changed; article is rewritte

    Report of the Terrestrial Bodies Science Working Group. Volume 4: The moon

    Get PDF
    A rationale for furture exploration of the moon is given. Topics discussed include the objectives of the lunar polar orbiter mission, the mission profile, and general characteristics of the spacraft to be used

    Giant Electroresistance in Ferroelectric Tunnel Junctions

    Get PDF
    The interplay between the electron transport in metal/ferroelectric/metal junctions with ultrathin ferroelectric barriers and the polarization state of a barrier is investigated. Using a model which takes into account screening of polarization charges in metallic electrodes and direct quantum tunneling across a ferroelectric barrier we calculate the change in the tunneling conductance associated with the polarization switching. We find the conductance change of a few orders of magnitude for metallic electrodes with significantly different screening lengths. This giant electroresistance effect is the consequence of a different potential profile seen by transport electrons for the two opposite polarization orientations.Comment: 4 page

    Equidistribution of Heegner Points and Ternary Quadratic Forms

    Get PDF
    We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allow both the fundamental discriminant and the conductor to grow. Moreover, for fixed fundamental discriminant and variable conductor, we deduce an effective surjectivity theorem for the reduction map from Heegner points to supersingular points at a fixed inert prime. Our results are applicable to the setting considered by Kolyvagin in the construction of the Heegner points Euler system

    A Matrix Approach to Numerical Solution of the DGLAP Evolution Equations

    Full text link
    A matrix-based approach to numerical integration of the DGLAP evolution equations is presented. The method arises naturally on discretisation of the Bjorken x variable, a necessary procedure for numerical integration. Owing to peculiar properties of the matrices involved, the resulting equations take on a particularly simple form and may be solved in closed analytical form in the variable t=ln(alpha_0/alpha). Such an approach affords parametrisation via data x bins, rather than fixed functional forms. Thus, with the aid of the full correlation matrix, appraisal of the behaviour in different x regions is rendered more transparent and free of pollution from unphysical cross-correlations inherent to functional parametrisations. Computationally, the entire programme results in greater speed and stability; the matrix representation developed is extremely compact. Moreover, since the parameter dependence is linear, fitting is very stable and may be performed analytically in a single pass over the data values.Comment: 13 pages, no figures, typeset with revtex4 and uses packages: acromake, amssym

    Systems, interactions and macrotheory

    Get PDF
    A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI

    Purifying Hydrogen with Inorganic Silica Membranes at High Temperatures

    Get PDF
    Development of high quality membranes for industrial applications will lead to cost reductions over traditional separations processes. Silica membranes are a new technology for hydrogen separation that needs R&D specifically to apply them to industrial scales. Past work has shown a carbonised template silica membrane which offered hydrostability. This resulted in better stability under steam and high temperature conditions without compromising the permselectivity for small molecules. In this paper a hydrostable silica membrane was developed for hydrogen separation having a pore cut-off around 3 Angstron units. The carbon templates did not compromise the membrane's ability to permeate hydrogen selectively rather than other major gases in a synthesised coal gasifier mixture of CO, CO2 and N2. The selectivity of H2 to N2 was 26, whilst the hydrostable property of the carbonised template membrane was maintained. Computational fluid dynamics (CFD) can be used to develop membrane systems in tandem with these intrinsic improvements. CFD simulation studies were also conducted to gain better insight into the macroscopic flow parameters

    Force-Velocity Relations of a Two-State Crossbridge Model for Molecular Motors

    Full text link
    We discuss the force-velocity relations obtained in a two-state crossbridge model for molecular motors. They can be calculated analytically in two limiting cases: for a large number and for one pair of motors. The effect of the strain-dependent detachment rate on the motor characteristics is studied. It can lead to linear, myosin-like, kinesin-like and anomalous curves. In particular, we specify the conditions under which oscillatory behavior may be found.Comment: 5 pages, 4 figures, REVTeX; thoroughly revised version; also available at http://www.physik.tu-muenchen.de/~frey

    Generalized Drude model: Unification of ballistic and diffusive electron transport

    Full text link
    For electron transport in parallel-plane semiconducting structures, a model is developed that unifies ballistic and diffusive transport and thus generalizes the Drude model. The unified model is valid for arbitrary magnitude of the mean free path and arbitrary shape of the conduction band edge profile. Universal formulas are obtained for the current-voltage characteristic in the nondegenerate case and for the zero-bias conductance in the degenerate case, which describe in a transparent manner the interplay of ballistic and diffusive transport. The semiclassical approach is adopted, but quantum corrections allowing for tunneling are included. Examples are considered, in particular the case of chains of grains in polycrystalline or microcrystalline semiconductors with grain size comparable to, or smaller than, the mean free path. Substantial deviations of the results of the unified model from those of the ballistic thermionic-emission model and of the drift-diffusion model are found. The formulation of the model is one-dimensional, but it is argued that its results should not differ substantially from those of a fully three-dimensional treatment.Comment: 14 pages, 5 figures, REVTEX file, to appear in J. Phys.: Condens. Matte
    corecore