Development of high quality membranes for industrial applications will lead to cost reductions over traditional separations processes. Silica membranes are a new technology for hydrogen separation that needs R&D specifically to apply them to industrial scales. Past work has shown a carbonised template silica membrane which offered hydrostability. This resulted in better stability under steam and high temperature conditions without compromising the permselectivity for small molecules. In this paper a hydrostable silica membrane was developed for hydrogen separation having a pore cut-off around 3 Angstron units. The carbon templates did not compromise the membrane's ability to permeate hydrogen selectively rather than other major gases in a synthesised coal gasifier mixture of CO, CO2 and N2. The selectivity of H2 to N2 was 26, whilst the hydrostable property of the carbonised template membrane was maintained. Computational fluid dynamics (CFD) can be used to develop membrane systems in tandem with these intrinsic improvements. CFD simulation studies were also conducted to gain better insight into the macroscopic flow parameters