887 research outputs found

    Looking Up, Down, and Sideways: Reconceiving Cumulative Effects Assessment as a Mindset

    Get PDF
    Despite all the effort that has gone into defining, researching and establishing best practices for cumulative effects assessment (CEA), understanding remains weak and practice wanting. At one extreme of implementation, CEA can be described as merely an irritant to the completion of a project-specific environmental assessment (EA). At the other extreme, the conceptual view is that all effects in EA should be deemed cumulative unless demonstrated otherwise. Our purpose here is to consider how we might reconceive CEA as a mindset that is at the heart of absolutely every assessment of valued ecosystem component (VEC) to ensure that we understand the relative contributions of various stressors and can decide when cumulative effects may foreclose future activities due to impacts on VECs. Conceptually, we ground the CEA mindset in the context of three lenses that must all be functioning and working together for the mindset to be operative: a technical lens; a law and policy lens; and a participatory lens. Our arguments are based on a review of the CEA, strategic effects assessment (SEA) and regional effects assessment literatures, an examination and consideration of Canadian EA and SEA case practice, and our combined professional experiences. Through using the Bay of Fundy in Canada as a case example, we establish the concept of the CEA mindset and an approach for moving forward with implementation

    A contribution to the conceptualisation of quality in impact assessment

    Get PDF
    Quality is much sought after in, and a basic foundation for, good impact assessment (IA). However, the term is rarely defined, has an uncertain relationship with IA effectiveness, and it means different things to different stakeholders, which can lead to debates over the legitimacy associated with an IA process. Thus, IA quality needs conceptualising to position research and practice within broader understandings. This paper contributes to this conceptualisation by identifying nine dimensions of quality through a process of literature review drawing on three fields of study in which quality and quality management have already been debated and conceptualised: education; health care; and business. This approach sidesteps the plural views on quality existing within the field of IA itself which might otherwise bias the identification of quality dimensions. We therefore propose that the dimensions of IA quality are: Efficiency; Optimacy; Conformance; Legitimacy; Equity; Capacity Maintenance; Transformative Capacity; and Quality Management. A literature review of IA research and practice confirms the relevance of the identified quality dimensions to IA. We identify, to an extent, the relationship between quality and effectiveness. Quality aligns with procedural and transactive effectiveness, partly aligns with normative effectiveness and is distinct from, but helps to deliver, substantive effectiveness

    THE IMPACT OF MOOSE (Alces alces andersoni) ON FOREST REGENERATION FOLLOWING A SEVERE SPRUCE BUDWORM OUTBREAK IN THE CAPE BRETON HIGHLANDS, NOVA SCOTIA, CANADA

    Get PDF
    Two interacting disturbances such as stand-level defoliation by spruce budworm (Choristoneura fumiferana) and subsequent herbivory by moose (Alces alces) may affect landscapes differently than if they occurred in isolation. We studied moose (A. a. andersoni) browsing on sites disturbed approximately 25 years ago by a severe spruce budworm outbreak in a region historically dominated by balsam fir (Abies balsamea) forest on northern Cape Breton Island, Nova Scotia, Canada. Our objectives were to 1) describe the impact of a large resident moose population on post-budworm regeneration of balsam fir and white birch (Betula papyrifera), and 2) to examine the interplay between moose abundance, site conditions, and variation in post-budworm forest regeneration. Fifty-eight ran­domly located sites were sampled for composition and structural characteristics, moose browse severity, moose pellet group density, and site conditions. We used univariate general linear modelling (GLM) and multivariate redundancy analysis (RDA) to examine relationships between moose abundance as indicated by pellet-groups, site conditions, and post-budworm regeneration. Approximately 65% of all balsam fir and white birch saplings tallied were severely browsed by moose, exhibiting stunted, abnormal growth forms. Both the GLM and the RDA indicated that moose abundance was the best predictor of variation in the density of post-budworm regeneration of balsam fir and white birch. Site conditions were less useful predictors of variation in regeneration. The relationship between moose abundance and regeneration of balsam fir and white birch was positive, suggesting that moose may be more abundant in areas where regeneration is denser. Sustained, severe browsing in areas regenerating after spruce budworm outbreak may significantly inhibit future forest development and alter the well documented spruce budworm-balsam fir cyclic successional system of northern Cape Breton Island

    Introduction: Relationships Between Protected Areas and Sustainable Forest Management: Where are We Heading?

    Get PDF
    The relationship between protected areas and forest management has been one that has often been fraught with conflict. New practices in the forest sector and new ecological insights have led more recently to better co-operation in some regions, although it is debatable to what extent cooperative approaches are desirable. In this introduction to the special section on the relationships between protected areas and sustainable forest management, we outline the history of the forestry and protected areas sectors in Canada, and the evolution of the relationships between them. We define key terms for the debate and offer a novel framework for understanding the relationship between the two sectors as management regimes that occur along parallel continua of sustainability. This framework is contrasted against real-world findings from across Canada, and with examples from elsewhere in the world

    Moose impacts on forest regeneration

    Get PDF
    Published versionTwo interacting disturbances such as stand-level defoliation by spruce budworm (Choristoneura fumiferana) and subsequent herbivory by moose (Alces alces) may affect landscapes differently than if they occurred in isolation. We studied moose (A. a. andersoni) browsing on sites disturbed approximately 25 years ago by a severe spruce budworm outbreak in a region historically dominated by balsam fir (Abies balsamea) forest on northern Cape Breton Island, Nova Scotia, Canada. Our objectives were to 1) describe the impact of a large resident moose population on post-budworm regeneration of balsam fir and white birch (Betula papyrifera), and 2) to examine the interplay between moose abundance, site conditions, and variation in post-budworm forest regeneration. Fifty-eight ran­domly located sites were sampled for composition and structural characteristics, moose browse severity, moose pellet group density, and site conditions. We used univariate general linear modelling (GLM) and multivariate redundancy analysis (RDA) to examine relationships between moose abundance as indicated by pellet-groups, site conditions, and post-budworm regeneration. Approximately 65% of all balsam fir and white birch saplings tallied were severely browsed by moose, exhibiting stunted, abnormal growth forms. Both the GLM and the RDA indicated that moose abundance was the best predictor of variation in the density of post-budworm regeneration of balsam fir and white birch. Site conditions were less useful predictors of variation in regeneration. The relationship between moose abundance and regeneration of balsam fir and white birch was positive, suggesting that moose may be more abundant in areas where regeneration is denser. Sustained, severe browsing in areas regenerating after spruce budworm outbreak may significantly inhibit future forest development and alter the well documented spruce budworm-balsam fir cyclic successional system of northern Cape Breton Island

    Toxokinetik und -dynamik ausgewahlter individueller chlorierter Biphenyle

    Get PDF
    SchluBbericht zum Forschungsvorhaben 03F0551

    Capturing Old-Growth Values for Use in Forest Decision-Making

    Get PDF
    Abstract Old-growth forests have declined significantly across the world. Decisions related to old growth are often mired in challenges of value diversity, conflict, data gaps, and resource pressures. This article describes old-growth values of citizens and groups in Nova Scotia, Canada, for integration in sustainable forest management (SFM) decision-making. The study is based on data from 76 research subjects who participated in nine field trips to forest stands. Research subjects were drawn from Aboriginal groups, environmental organizations, forestry professionals, and rural and urban publics. Diaries, group discussions, and rating sheets were used to elicit information during the field trips. Findings show that different elicitation techniques can influence the articulation of intensity with which some values are held. In addition, certain values are more often associated with old-growth than with other forest-age classes. Some values associated with old-growth are considered more important than others, and some silvicultural treatments are perceived to compromise old-growth values more than others. Demographic characteristics, such as constituency group, gender, and age, are shown to influence value priorities. Ideas on how to incorporate old-growth values into SFM decision-making are highlighted

    Participatory development of decision support systems: which features of the process lead to improved uptake and better outcomes?

    Full text link
    Decision support systems (DSSs) are important in decision-making environments with conflicting interests. Many DSSs developed have not been used in practice. Experts argue that these tools do not respond to real user needs and that the inclusion of stakeholders in the development process is the solution. However, it is not clear which features of participatory development of DSSs result in improved uptake and better outcomes. A review of papers, reporting on case studies where DSSs and other decision tools (information systems, software and scenario tools) were developed with elements of participation, was carried out. The cases were analysed according to a framework created as part of this research; it includes criteria to evaluate the development process and the outcomes. Relevant aspects to consider in the participatory development processes include establishing clear objectives, timing and location of the process; keeping discussions on track; favouring participation and interaction of individuals and groups; and challenging creative thinking of the tool and future scenarios. The case studies that address these issues show better outcomes; however, there is a large degree of uncertainty concerning them because developers have typically neither asked participants about their perceptions of the processes and resultant tools nor have they monitored the use and legacy of the tools over the long term.The authors would like to thank COST Action FP0804-Forest Management Decision Support Systems (FORSYS) for financing a three month Short-Term Scientific Mission (STSM) in Forest Research (Roslin, UK) in 2012, making possible this research; Spanish Ministry of Economy and Competitiveness for supporting the project Multicriteria Techniques and Participatory Decision-Making for Sustainable Management (Ref. ECO2011-27369) where the leading author is involved; and the Regional Ministry of Education, Culture and Sports (Valencia, Spain) for financing a research fellowship (Ref. ACIF/2010/248).Valls Donderis, P.; Ray, D.; Peace, A.; Stewart, A.; Lawrence, A.; Galiana, F. (2013). Participatory development of decision support systems: which features of the process lead to improved uptake and better outcomes?. Scandinavian Journal of Forest Research. 29(1):71-83. https://doi.org/10.1080/02827581.2013.837950S7183291Arnstein, S. R. (1969). A Ladder Of Citizen Participation. Journal of the American Institute of Planners, 35(4), 216-224. doi:10.1080/01944366908977225Atwell, R. C., Schulte, L. A., & Westphal, L. M. (2011). Tweak, Adapt, or Transform: Policy Scenarios in Response to Emerging Bioenergy Markets in the U.S. Corn Belt. Ecology and Society, 16(1). doi:10.5751/es-03854-160110Barac, A., Kellner, K., & De Klerk, N. (2004). Land User Participation in Developing a Computerised Decision Support System for Combating Desertification. Environmental Monitoring and Assessment, 99(1-3), 223-231. doi:10.1007/s10661-004-4022-6Bennet, A., & Bennet, D. (2008). The Decision-Making Process in a Complex Situation. Handbook on Decision Support Systems 1, 3-20. doi:10.1007/978-3-540-48713-5_1Blackstock, K. L., Kelly, G. J., & Horsey, B. L. (2007). Developing and applying a framework to evaluate participatory research for sustainability. Ecological Economics, 60(4), 726-742. doi:10.1016/j.ecolecon.2006.05.014Breuer, N. E., Cabrera, V. E., Ingram, K. T., Broad, K., & Hildebrand, P. E. (2007). AgClimate: a case study in participatory decision support system development. Climatic Change, 87(3-4), 385-403. doi:10.1007/s10584-007-9323-7Bunch, M. J., & Dudycha, D. J. (2004). Linking conceptual and simulation models of the Cooum River: collaborative development of a GIS-based DSS for environmental management. Computers, Environment and Urban Systems, 28(3), 247-264. doi:10.1016/s0198-9715(03)00021-8Byrne, E., & Sahay, S. (2007). Participatory design for social development: A South African case study on community-based health information systems. Information Technology for Development, 13(1), 71-94. doi:10.1002/itdj.20052Cain, J. ., Jinapala, K., Makin, I. ., Somaratna, P. ., Ariyaratna, B. ., & Perera, L. . (2003). Participatory decision support for agricultural management. A case study from Sri Lanka. Agricultural Systems, 76(2), 457-482. doi:10.1016/s0308-521x(02)00006-9Chakraborty, A. (2011). Enhancing the role of participatory scenario planning processes: Lessons from Reality Check exercises. Futures, 43(4), 387-399. doi:10.1016/j.futures.2011.01.004Cinderby, S., Bruin, A. de, Mbilinyi, B., Kongo, V., & Barron, J. (2011). Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study. Physics and Chemistry of the Earth, Parts A/B/C, 36(14-15), 1093-1102. doi:10.1016/j.pce.2011.07.039Drew, C. H., Nyerges, T. L., & Leschine, T. M. (2004). Promoting Transparency of Long‐Term Environmental Decisions: The Hanford Decision Mapping System Pilot Project. Risk Analysis, 24(6), 1641-1664. doi:10.1111/j.0272-4332.2004.00556.xDriedger, S. M., Kothari, A., Morrison, J., Sawada, M., Crighton, E. J., & Graham, I. D. (2007). Using participatory design to develop (public) health decision support systems through GIS. International Journal of Health Geographics, 6(1), 53. doi:10.1186/1476-072x-6-53Evers, M. (2008). An analysis of the requirements for DSS on integrated river basin management. Management of Environmental Quality: An International Journal, 19(1), 37-53. doi:10.1108/14777830810840354Iivari, N. (2011). Participatory design in OSS development: interpretive case studies in company and community OSS development contexts. Behaviour & Information Technology, 30(3), 309-323. doi:10.1080/0144929x.2010.503351Innes, J. E., & Booher, D. E. (1999). Consensus Building and Complex Adaptive Systems. Journal of the American Planning Association, 65(4), 412-423. doi:10.1080/01944369908976071Jakku, E., & Thorburn, P. J. (2010). A conceptual framework for guiding the participatory development of agricultural decision support systems. Agricultural Systems, 103(9), 675-682. doi:10.1016/j.agsy.2010.08.007Jessel, B., & Jacobs, J. (2005). Land use scenario development and stakeholder involvement as tools for watershed management within the Havel River Basin. Limnologica, 35(3), 220-233. doi:10.1016/j.limno.2005.06.006Kautz, K. (2011). Investigating the design process: participatory design in agile software development. Information Technology & People, 24(3), 217-235. doi:10.1108/09593841111158356Kowalski, K., Stagl, S., Madlener, R., & Omann, I. (2009). Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. European Journal of Operational Research, 197(3), 1063-1074. doi:10.1016/j.ejor.2007.12.049Lawrence, A. (2006). ‘No Personal Motive?’ Volunteers, Biodiversity, and the False Dichotomies of Participation. Ethics, Place & Environment, 9(3), 279-298. doi:10.1080/13668790600893319Mao, J., & Song, W. (2008). Empirical study of distinct features and challenges of joint development of information systems: The case of ABC bank. Tsinghua Science and Technology, 13(3), 414-419. doi:10.1016/s1007-0214(08)70066-xMenzel, S., Nordström, E.-M., Buchecker, M., Marques, A., Saarikoski, H., & Kangas, A. (2012). Decision support systems in forest management: requirements from a participatory planning perspective. European Journal of Forest Research, 131(5), 1367-1379. doi:10.1007/s10342-012-0604-yMoote, M. A., Mcclaran, M. P., & Chickering, D. K. (1997). RESEARCH: Theory in Practice: Applying Participatory Democracy Theory to Public Land Planning. Environmental Management, 21(6), 877-889. doi:10.1007/s002679900074Peleg, M., Shachak, A., Wang, D., & Karnieli, E. (2009). Using multi-perspective methodologies to study users’ interactions with the prototype front end of a guideline-based decision support system for diabetic foot care. International Journal of Medical Informatics, 78(7), 482-493. doi:10.1016/j.ijmedinf.2009.02.008Pretty, J. N. (1995). Participatory learning for sustainable agriculture. World Development, 23(8), 1247-1263. doi:10.1016/0305-750x(95)00046-fReed MS. 2008. Stakeholder participation for environmental management: a literature review. Sustainability Research Institute, School of Earth and Environment, University of Leeds.Reed, M. S., & Dougill, A. J. (2010). Linking degradation assessment to sustainable land management: A decision support system for Kalahari pastoralists. Journal of Arid Environments, 74(1), 149-155. doi:10.1016/j.jaridenv.2009.06.016Rowe, G., & Frewer, L. J. (2000). Public Participation Methods: A Framework for Evaluation. Science, Technology, & Human Values, 25(1), 3-29. doi:10.1177/016224390002500101Schielen, R. M. J., & Gijsbers, P. J. A. (2003). DSS-large rivers: developing a DSS under changing societal requirements. Physics and Chemistry of the Earth, Parts A/B/C, 28(14-15), 635-645. doi:10.1016/s1474-7065(03)00109-8Sheppard, S. R. J., & Meitner, M. (2005). Using multi-criteria analysis and visualisation for sustainable forest management planning with stakeholder groups. Forest Ecology and Management, 207(1-2), 171-187. doi:10.1016/j.foreco.2004.10.032Thursky, K. A., & Mahemoff, M. (2007). User-centered design techniques for a computerised antibiotic decision support system in an intensive care unit. International Journal of Medical Informatics, 76(10), 760-768. doi:10.1016/j.ijmedinf.2006.07.011Webler, S. T., Thomas. (1999). Voices from the Forest: What Participants Expect of a Public Participation Process. Society & Natural Resources, 12(5), 437-453. doi:10.1080/089419299279524Van Meensel, J., Lauwers, L., Kempen, I., Dessein, J., & Van Huylenbroeck, G. (2012). Effect of a participatory approach on the successful development of agricultural decision support systems: The case of Pigs2win. Decision Support Systems, 54(1), 164-172. doi:10.1016/j.dss.2012.05.002Von Geibler, J., Kristof, K., & Bienge, K. (2010). Sustainability assessment of entire forest value chains: Integrating stakeholder perspectives and indicators in decision support tools. Ecological Modelling, 221(18), 2206-2214. doi:10.1016/j.ecolmodel.2010.03.02

    Report of the expert meeting on food safety for seaweed – Current status and future perspectives

    Get PDF
    The world production of marine macroalgae, or seaweed, has more than tripled since the turn of the millennium, increasing from 10.6 million tonnes in 2000 to 32.4 million tonnes in 2018. Increased cultivation and utilization of seaweed are expected to be important pillars of sustainable food security and a robust aquatic economy in the coming years. It is important, therefore, to consider the food safety implications of (increased) seaweed use for food. Many factors can affect the presence of hazards in seaweed, including: the type of seaweed, its physiology, the season in which it is produced, production waters, harvesting methods and processing. Several hazards such as heavy metals and marine biotoxins have been reported to be (potentially) associated with seaweed. However, legislation and guidance documents on the production and utilization of seaweed are generally still lacking. FAO and the World Health Organization (WHO) have therefore developed this report to identify food safety hazards (microbiological, chemical and physical) linked to the consumption of seaweed and aquatic plants. The present analysis could therefore provide a basis for undertaking further work in this area. Moreover, both FAO and WHO believe that there would be a value in developing relevant Codex guidance on this subject.publishedVersio
    corecore