635 research outputs found
Thematic mapper radiomtric variability on ostensibly uniform agricultural scenes
The effects of the interaction of the sensor point spread function with a heterogeneous scene consisting of elements giving rise to different spectral radiant intensities cause errors in multitemporal signatures due to fractional pixel repositioning errors. In the case of a heterogeneous scene, the repositioning accuracy between acquisitions could affect the radiometric output in any band and could affect the spectral distribution of radiance between bands. Error caused by within-band and between-band variations in radiance with time could be compounded by resampling along and between scan lines during processing. The magnitude of both error sources depends on the degree of heterogeneity of the scene
Study to assess the importance of errors introduced by applying NOAA 6 and NOAA 7 AVHRR data as an estimator of vegetative vigor: Feasibility study of data normalization
The use of NOAA AVHRR data to map and monitor vegetation types and conditions in near real-time can be enhanced by using a portion of each GAC image that is larger than the central 25% now considered. Enlargement of the cloud free image data set can permit development of a series of algorithms for correcting imagery for ground reflectance and for atmospheric scattering anisotropy within certain accuracy limits. Empirical correction algorithms used to normalize digital radiance or VIN data must contain factors for growth stage and for instrument spectral response. While it is not possible to correct for random fluctuations in target radiance, it is possible to estimate the necessary radiance difference between targets in order to provide target discrimination and quantification within predetermined limits of accuracy. A major difficulty lies in the lack of documentation of preprocessing algorithms used on AVHRR digital data
Systematic and random variations in digital Thematic Mapper data
Radiance recorded by any remote sensing instrument will contain noise which will consist of both systematic and random variations. Systematic variations may be due to sun-target-sensor geometry, atmospheric conditions, and the interaction of the spectral characteristics of the sensor with those of upwelling radiance. Random variations in the data may be caused by variations in the nature and in the heterogeneity of the ground cover, by variations in atmospheric transmission, and by the interaction of these variations with the sensing device. It is important to be aware of the extent of random and systematic errors in recorded radiance data across ostensibly uniform ground areas in order to assess the impact on quantative image analysis procedures for both the single date and the multidate cases. It is the intention here to examine the systematic and the random variations in digital radiance data recorded in each band by the thematic mapper over crop areas which are ostensibly uniform and which are free from visible cloud
Molecular Interactions of the Min Protein System Reproduce Spatiotemporal Patterning in Growing and Dividing Escherichia coli Cells
© 2015 Walsh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane- bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo
Demonstration of angular anisotropy in the output of Thematic Mapper
There is a dependence of TM output (proportional to scene radiance in a manner which will be discussed) upon season, upon cover type and upon view angle. The existence of a significant systematic variation across uniform scenes in p-type (radiometrically and geometrically pre-processed) data is demonstrated. Present pre-processing does remove the effects and the problem must be addressed because the effects are large. While this is in no way attributable to any shortcomings in the thematic mapper, it is an effect which is sufficiently important to warrant more study, with a view to developing suitable pre-processing correction algorithms
DNA damage induces nucleoid compaction via the Mre11-Rad50 complex in the archaeon Haloferax volcanii
In prokaryotes the genome is organized in a dynamic
structure called the nucleoid, which is embedded in
the cytoplasm. We show here that in the archaeon
Haloferax volcanii, compaction and reorganization of
the nucleoid is induced by stresses that damage the
genome or interfere with its replication. The fraction
of cells exhibiting nucleoid compaction was proportional
to the dose of the DNA damaging agent, and
results obtained in cells defective for nucleotide excision
repair suggest that breakage of DNA strands
triggers reorganization of the nucleoid. We observed
that compaction depends on the Mre11-Rad50
complex, suggesting a link to DNA double-strand
break repair. However, compaction was observed in a
radA mutant, indicating that the role of Mre11-Rad50
in nucleoid reorganisation is independent of homologous
recombination. We therefore propose that
nucleoid compaction is part of a DNA damage
response that accelerates cell recovery by helping
DNA repair proteins to locate their targets, and facilitating
the search for intact DNA sequences during
homologous recombination
Patterning of the MinD cell division protein in cells of arbitrary shape can be predicted using a heuristic dispersion relation
© 2016, Paul M. G. Curmi, et al. Many important cellular processes require the accurate positioning of subcellular structures. Underpinning many of these are protein systems that spontaneously generate spatiotemporal patterns. In some cases, these systems can be described by non-linear reaction-diffusion equations, however, a full description of such equations is rarely available. A well-studied patterning system is the Min protein system that underpins the positioning of the FtsZ contractile ring during cell division in Escherichia coli. Using a coordinate-free linear stability analysis, the reaction terms can be separated from the geometry of a cell. The reaction terms produce a dispersion relation that can be used to predict patterning on any cell shape and size. Applying linear stability analysis to an accurate mathematical model of the Min system shows that while it correctly predicts the onset of patterning, the dispersion relation fails to predict oscillations and quantitative mode transitions. However, we show that data from full solutions of the Min model can be used to generate a heuristic dispersion relation. We show that this heuristic dispersion relation can be used to approximate the Min protein patterning obtained by full simulations of the non-linear reaction-diffusion equations. Moreover, it also predicts Min patterning obtained from experiments where the shapes of E. coli cells have been deformed into rectangles or arbitrary shapes. Using this procedure, it should be possible to generate heuristic dispersion relations from protein patterning data or simulations for any patterning process and subsequently use these to predict patterning for arbitrary cell shapes
Identification and Characterisation of the RalA-ERp57 Interaction: Evidence for GDI Activity of ERp57
RalA is a membrane-associated small GTPase that regulates vesicle trafficking. Here we identify a specific interaction between RalA and ERp57, an oxidoreductase and signalling protein. ERp57 bound specifically to the GDP-bound form of RalA, but not the GTP-bound form, and inhibited the dissociation of GDP from RalA in vitro. These activities were inhibited by reducing agents, but no disulphide bonds were detected between RalA and ERp57. Mutation of all four of ERp57's active site cysteine residues blocked sensitivity to reducing agents, suggesting that redox-dependent conformational changes in ERp57 affect binding to RalA. Mutations in the switch II region of the GTPase domain of RalA specifically reduced or abolished binding to ERp57, but did not block GTP-specific binding to known RalA effectors, the exocyst and RalBP1. Oxidative treatment of A431 cells with H2O2 inhibited cellular RalA activity, and the effect was exacerbated by expression of recombinant ERp57. The oxidative treatment significantly increased the amount of RalA localised to the cytosol. These findings suggest that ERp57 regulates RalA signalling by acting as a redox-sensitive guanine-nucleotide dissociation inhibitor (RalGDI). © 2012 Brymora et al
Incompatible sets of gradients and metastability
We give a mathematical analysis of a concept of metastability induced by
incompatibility. The physical setting is a single parent phase, just about to
undergo transformation to a product phase of lower energy density. Under
certain conditions of incompatibility of the energy wells of this energy
density, we show that the parent phase is metastable in a strong sense, namely
it is a local minimizer of the free energy in an neighbourhood of its
deformation. The reason behind this result is that, due to the incompatibility
of the energy wells, a small nucleus of the product phase is necessarily
accompanied by a stressed transition layer whose energetic cost exceeds the
energy lowering capacity of the nucleus. We define and characterize
incompatible sets of matrices, in terms of which the transition layer estimate
at the heart of the proof of metastability is expressed. Finally we discuss
connections with experiment and place this concept of metastability in the
wider context of recent theoretical and experimental research on metastability
and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea
A novel mass spectrometric strategy "bEMAP" reveals Extensive O-linked protein glycosylation in Enterotoxigenic Escherichia coli
© The Author(s) 2016. The attachment of sugars to proteins via side-chain oxygen atoms (O-linked glycosylation) is seen in all three domains of life. However, a lack of widely-applicable analytical tools has restricted the study of this process, particularly in bacteria. In E. coli, only four O-linked glycoproteins have previously been characterized. Here we present a glycoproteomics technique, termed BEMAP, which is based on the beta-elimination of O-linked glycans followed by Michael-addition of a phosphonic acid derivative, and subsequent titanium dioxide enrichment. This strategy allows site-specific mass-spectrometric identification of proteins with O-linked glycan modifications in a complex biological sample. Using BEMAP we identified cell surface-associated and membrane vesicle glycoproteins from Enterotoxigenic E. coli (ETEC) and non-pathogenic E. coli K-12. We identified 618 glycosylated Serine and Threonine residues mapping to 140 proteins in ETEC, including several known virulence factors, and 34 in E. coli K-12. The two strains had 32 glycoproteins in common. Remarkably, the majority of the ETEC glycoproteins were conserved in both strains but nevertheless were only glycosylated in the pathogen. Therefore, bacterial O-linked glycosylation is much more extensive than previously thought, and is especially important to the pathogen
- …
