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In this section we outline the theoretical and experimental work

performed in response to the statement of work, the primary contents of

which are discussed here. It is noted that, while using the image data

archives and computation facilities at JSC Houston as agreed to origi-

nally, difficulties were encountered in obtaining time on the computer

due to an overload situation. This has severely restricted the amount

of throughput which it has been possible to obtain, using digital data

from the NOAA AVHR': in the reported time period. For this reason, in

FY 1983 we plan to rent time on a commercial image analysis computer in

our attempt to obtain our findings in a more timely fashion. However,

we wish to extend our thanks to NASA and to Lockheed support staff,

especially G. Ryland, for their willing help in a difficult situation

generated by heavy computer usage.

It has already been demonstrated by the Early Warning Crop Condition

Assessment (EW/CCA) Project in AgRISTARS that the NOAA 6 and NOAA 7

Advanced Very High Resolution Radiometer (AVHRR) data is useful, in con-

junction with meteorological and historical crop information, for mapping

and monitoring vegetative (crop) cover on a coarse scale. The Foreign

Agriculture Service (FAS) of the USDA is already using this data for

assessment purposes. However, due to sources of error i:i the data,

detailed below, the FAS is currently able to use onl y the central 25%

of each image.
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The purpose of this project has been to identify and to evaluate

potential sources of error in the AVHRR digital data so that appropriate

steps may be taken to develop algorithms to minimize the effect of those

artifacts detected in the data (artifact being here defined to consist of

that part of the signal which not only contributes no useful information

on the ground feature of interest (i.e., vegetative canopy), but which

indeed obscures the nature and condition of the canopy insofar as said

nature and condition may be ascertained from an analysis of the AVHRR

digital data).

Artifacts have been found to exist in the data due to anisotropic

reflectance properties of the earth's surface and due to anisotropic back-

scattering of light from the atmosphere into the sensor. These two effects,

coupled with an interaction of the spectral distribution of the radiance

incident on the sensor (and the angle dependence of this quantity) with the

spectral response of the sensor gives rise to a scan angle-dependence of

the sensor imagery. While part of the anisotropy will be random (which

cannot be calibrated out of the data) most will be systematic (which can

be calibrated out). The systematic variation of scanner data with view

angle has been observed for the Landsat MSS 50 , which has scan angle limits

of + 5.8°: the variation will obviously be much larger in the case of the

AVHRR, which has scan angle limits of + 54°. For this reason, the present

investigation has been directed towards predicting the nature and magnitude

of the anticipated scan angle-dependence of recorded radiance in order to

understand the nature of the effects and to help extend the findings of
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parallel, empirical studies. wings from empirical studies of digital

remotely sensed images are steam to be in wort of the predictions of

the deterministic simulation studies. This fact lends support to the

expectation that the outcome of this investigation will be workable algo-

rithms to normalize artifacts from the digital scanner data.

At present, as mentioned above, only the central 252 of the AVHRR

data is used in global crop condition assessment by FAS. Since the proba-

bility of cloud is extremely high in some crop growing regions, it will be

necessary to extend beyond the central 512 pixels (the central 252 of the

tmare*) in order to obtain images at frequent intervals in time, so as to

track dynamic changes in the vegetative canopy and so monitor crop condition.

Maven moderately effective corre^tion algorithms might extend the useful

part of the scatiner image to the central 50%, thereby doubling the frequency

of eff(-(-tive 2overage of all those areas covered. This would greatly en-

hance the probability of getting adequate coverage of most areas (even those

with high fregiienc•y of cloud cover) throughout the growing season, so that

information on crap condition may be obtained and updated in a timely manner

to permit policy decisions to be made.

At present, the concept of obtaining recorded radiance simultaneously

In several optical channels is favored. This provides a "measurement vector"

for each area on the ground represented by a pixel. Assuming that sufficient

*Pixel length varies strongly with scan angle across track (E-W) by a factor of
over 6 at the edge of the scan S1 . Each pixel represents an equal angular in-
crement of the AVHRR mirror, not an equal sized ground area.

f
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known constitution on the basis of the recorded radiance signatures.

In the training process, the pixels of the (known) training areas are

then clustered in n-dimensional (where n - no. of data channels) measure-

ment space where each measurement channel represewts an axis (dimension).

In order to optimize discriminability of the clusters formed by the measure-

ment vectors for pixels of known nature, it may to necessary to transform

the measurement vector into a "feature vector". This is achieved by means

of a transformation matrix and may result in fewer and/or altered vector

elements. Further operations are then performed upon the clusters in n-

dimensional "fee.ture space". A decision rule (either (1) a deterministic,

arithmetic or geometric algorithm or (2) a statistical, generally Bayesian,

algorithm) is then used to decide to which cluster each pixel is most

f	 likely to belong. This is achieved by considering boundaries to exist

between the clusters in feature space (called, for this purpose, decision

space) and by using the selected rule to decide within which boundaries

(i.e. within which region of decision space) each pixel belongs.

The assumption is, of course, that the "known" areas on the ground,

from which the clusters in measurement space are deduced, have the same

optical properties in different locations. For example, if you have only

a few training areas on wheat in country 'A', can you reasonably expect

that the cluster in measurement space to which the pixels obtained from 'A'
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(using the selected sensing device) belong will also contain the measurement

i;	 vectors from the same crop in country W. The problem is one of what is
} termed "signature extension". Of course, one need not even go outside the

borders of the USA to realize that signature extension is indeed a problem.

Further, distortions of measurement vectors by those artifacts (arising

from anisotropy) mentioned above will only serve to exacerbate the situation.

The alternative to supervised classification is called (surprise!)

unsupervised classification and is used when not enough ground information

exists to be able to "train" the computer to recognize specific ground

cover types ("classes" or "themes". The measurement vectors (or feature

vectors,if a transformation is applied prior to the classification process)

are allowed to fall into clusters according to the naturally occurring

spectral differences between the pixels. Not only may such clusters be

leas separable (since it is not possible to orient the transformation from

measurement space to feature space to specifically separate clusters known

to represent training areas of known type at ground level) but the assump-

tion that clusters of measurement or feature vectors represent each class

or theme in an identifiable manner may not be tested. In other words, it

is implicitly assumed that the recorded spectral radiance from a class is

representative of that class in a predictive fashion. This may not be the

case. Thus, it is not surprising that the classification accuracy (found

In the case of supervised classification by using "test areas" of known

class) has been found in several studies to be lower for unsupervised than

for supervised classification.
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type and condition and Early Warning Project studies involve the visual

investigation of processed AVHRR data.

Instead of using automated clustering algorithms, the measurement vec-

tor is abridged from n-dimensions (or m-dimensions, as discussed above, for

the feature vector) to form a two-dimensional feature vector. The manner

in which the features are combined varies, but the result is what is hoped

to be a measure of vegetative vigor (vegetative indes). There are over 50

such indices
53,54

 involving two bands of information; the reflected red

and infrared, and it may be shown that all of the indices are related. It

may be shown that correlations exist between ground targets and remotely

sensed radiance levels. However, it has not yet been completely demonstrated

that remotely sensed radiance levels may be used to lcniquely characterize

the nature of ground targets (e.g. 55). In other words, studies showing that

there is a correlation between a vegetative index and some feature of the

vegetative canopy do not adequately demonstrate that the vegetation feature

considered is the only one controlling the recorded radiance levels.

The vegetation indices considered here were

VIN 1 - AVHRR 2 - AVHRR 1

which refers to the difference in radiance recorded in the first two AVHRR

channels and

VIN 2 - 
AVHRR 2 - AVHRR 1

AVHRR 2 + AVHRR 1
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These indices and modifications of VIN 1 are used by the Early Warning

AgRISTARS project and by FAS.

In simulation studies and in empirical observations, VINs were calcu-

lated and angle-dependence studied, as well as the angle dependence of the

recorded radiance values.

It is worth mentioning that difficulties arose in this study, not only

due to the heavy use of the computer facilities at the Ag2ISTARS project,

but because of the dynamic state of the procedures used to process those

tapes used in the analysis of digital radiance levels. An example is the

difficulty in determining what corrections (such as sun angle correction)

had been applied to the AVHRR tapes. Further difficulties arose due to

difficulties in location of and access to the data.
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2. The anisotropy of thereflectance properties of the around

Measurements of reflectance factors at ground level have been made for
{	

a variety of sun-target-sensor geometries. 1-13
 These measurements show that

there is a considerable degree of angular anisotropy in the bidirectional

reflectance factor and in the hemispherical-conical reflectance factor. The

geometrical nomenclature is shown in Fig. 1. Here, the sun is at a zenith

angle z to the vertical and at an azimuth angle ^ with respect to a reference

direction (usually north - N) on the horizontal plane. The detector records

radiance at a view zenith (scan) angle e'' with respect to the vertical and

at an azimuth f' with respect to the above reference direction in the hori-

zontal plane. A perfectly diffuse reflector would obey Lambert's reflection

law and would reflect radiaree equally in all directions (i.e. all e',#').

Real reflectors can be extremely anisotropic in their reflectance properties.

There are stochastic 
13-15 

and deterministic 
16-18 

models of the vegeta-

tive canopy which describe the angular dependence of the reflectance factor

and which have been tested against theory
3,4,12 . The agreement is generally

good.

There is a paucity of experimental data. While some excellent

measurements have been recorded for wheat and for soybeans in the LARSPEC

data file at Purdue University, these are the only complete (i.e. covering

the whole hemisphere) reflectance factor data sets which exist. Thus, in

order to study the goniometric anisotropy of a variety of vegetation canopies,

it will be ?•ecessary to obtain enough simultaneously a_quired biophysical

L.
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(e.g. leaf area and disposition, spectral transmission and reflectance of

leaves) and canopy reflectance data to calibrate the canopy reflectance

models so that they may be extended into other angular regimes fcr predic-

tion purposes.

Typical experutental canopy reflectance data are shown in Figs. 1-9

for wheat. The growth stages for wheat are 3.5 (boot) and 4.5 (fully

headed) on the modified Feeks scale. The scan angle plan is selected so

as to correspond to that of the AWRY, on NOAH 6 and NOAA 7. The dependence

of the reflectance properties of the vegetative canopies upon view zenith

(scan) angle and upon view azimuth angle is evident.

I
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3. The effect of the atmosphere

The atmosphere interacts with radiance from the sun in such a way that

irradiance falling on the top of the atmosphere is absorbed and scattered

preferentially in some parts of the spectrum. Generally, the atmosphere

acts in sucl. a way as to reduce the intensity of radiation incident on the

ground (e.g. 19).

The irradiance on the ground will consist partly of 'sky' radiance

and partly of direct solar illumination depending on the amount of haze

and on the amount of cloud in the sky. A curve showing spectra- global

irradiance ie shoua in Fig. 14a. Typical ratios of diffuse to direct

radiance are shown i-i fig. 14b. The measurements from which these curves

were constructed were made at ground level using a radiometer with a cosine

receptor.

The reflectance properties of the ground are dependent to some extent

upon the polar (goniometric' distribution of the radiation field incident

at ground level. 20-22

The radiance reflected by the ground is partly scattered by tLe atmos-

phere, reducing signal. However, there is additional radiance which is

backscattered from the sky into the sensor. This is termed "path .-4jiance"

and may be assessed experimentally from ground measurements made simul-

taneously with r s-mote sensing data acquisition (e.g. 
23-25'). 

Path radiance

26-29,35
may also be experimentally assessed from the remotely sensed data (e.g. 	 ).
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M alternative approach is to use models of the atmosphere. Given

certain assumptions in the construction of the atmosphere (e.g. formed of

layetf; of different transmission) it is possible to Lalculate path radiance

for various sun-target-sensor geometries, given the scattering particle

size and density distribution (e.g.29-35).

Yet another approach, is to use the look-up tables calculated by

Dave 
36-39 

for Cie effects of atmospheric transmission and backscatter.

Dave used three different aerosol distributions to represent different

climatic conditions. The tables cover all possible sun-target-sensor

geometries. While the parameters used by Dave do not provide the answer

for all atmospheric conditions, at least this method is useful insofar as

it provides a ready method of computing atmospheric effects on remote

sensing data. The only drawback is that Dave assumes that the ground re-

flects with equal efficiency into all view zenith and azimuth angles (i.e.

behaves like a Lambertian reflector). This is not sufficiently accurate

for representations of data recorded by sensors with large scan angle limits.

Table 1(a) shows typical values of atmospheric extinction opAcal

thickness used for a 'clear' atmosphere (visibility >50 Ian) and for a

'turbid' atmosphere (visibility <10 km). Table 1(b) shows path radiance

calculated for various scan angles towards the sun (^'- 00) and away from

the sun (^'- 1800) (34,40).

It should be noted that the predictive models are based upon fundamental

assumptions and may make corrections for systematic atmospheric effects.

However, they will not allow for random effects (e.g.
41

). The correction for

{	 atmospheric effects 1s thus complex,	 despite the ingenuity of workers in

the field.



4. Simulation studies: an aid to the generalization of empirical findings

While it is necessary to make empirical calibrations on an image-by-

image basis, it is also necessary to develop an a priori understanding of

the cause of variations in radiance level and in radiance signature across
I

a scene. This will promote an understanding of the factors involved in

causing the anisotropy of detected radiance, enabling data collection condi-

tions to be optimized. When considering data from existing sensors, this

means a more prudent selection of imagery to serve a particular purpose.

Future applications should involve an optimization of sensor geometry and of

spacecraft ephemeris to optimize the detectability or discriminability of

parts^ular ground features or characteristics. Simulation models have been

described 
43-48, 

The radiance recorded in a particular bandpass of a sensing

device may be described by the following equation:

X2

f X1 I(	 {E(z,•R{z,..a)•T(e'>^) + Lpath (z,,^'a)} .dX

R 
	 a2

!X1 I(X).da	 (1)

Where:

I(^)	 spectral -instrument response.

E(z,X) - spectral global irradiance on target
r

R(z,^;8',^',a) - spectral hemispherical-conical reflectance
factor

T(9'a) - spectral atmospheric transmission
F

Lpath(z',,a) - spectral atmospheric backscatter (path radiance)

X 2, X 1 - (respectively) upper and lower wavelengt7: limits
of sensor bandpass at zero power.

_-	 -- --=	 _	 IA
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The wavelength iependence of these parameters will be marked in the

case of the reflectance factor R(z,f;e',#',A) and in the case of the irra-

diance E(z,a). The instrument response I(a) will be dependent upon the

sensing system and may vary rapidly with wavelength. The atmospheric trans-

mission and backscatter or (path radiance) will vary somewhat more slowly

with wavelength.

Typical examples of the wavelength dependence of these parameters are

shown in Fig. 15. These parameters will interact, in a manner which depends

upon the wavelength-dependence and angle-dependence of each parameter (e.g.48).

The spectral responses of the first two bands of the NOAA 6 AVHRR are shown

in Fig. 16. It is necessary to be aware of the magnitudes of such interactions.

Data exist in the LARSPEC files at Purdue University (e.g. 49) for the

angle dependence of the reflectance properties of wheat and, as an example,

these vere used to compute the anticipated normalized sensor outputs for the

NOAA 6 AVHRR. The angular parameters for the wheat reflectance data selected

corresponded to the NOAA 6 overpass ephemeris parameters (i.e.for sun-target-

sensor geometry). The maturity stage of the wheat when the reflectance

measurements were made was 4.5 on the modified Feeks scale. The simulated

results are shown in Fig. 17. It is seen that the simulated data show a

dependence on view zenith (scan) angle and also upon atmospheric turbidity.

These findings and others which will be shown later support experimental

observations of radiance made on NOAA-AVHRR images.
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5. Observations of goniometric anisotropy in recorded radiance

Observations have been made of a scan angle dependence in Landsat-

Multispectral Scanner (MSS) imagerySQ. The MSS has scan angle limits of

only + 5.78°. The NOAA Advanced Very High Resolution Radiometer (AVHRR)

has much larger scan angle limits of + 54°. Further, the Landsat A thematic

mapper (TM) has proposed scan angle limits of + 26°. The SPOT satellite

high resolution visible radiometer (HRV) has a proposed angular range of

+ 270 from nadir. Therefore, it is to be expected that for sensing systems

with large polar view (scan) angle limits, the scan angle effect will be

larger. This is in fact the case (e.g.46-48). It is necessary to calibrate

digital radiance levels in each channel to the nadir value. This facili-

tates the within-image and between-image calibration necessary for meaning-

ful signature extension, so that automated or semi-automated image classi-

fication procedures may be performed for the whole image with minimum of

errors of omission and/or commission. If it is not possible to calibrate

the entire image back to nadir then it is necessary to know the practical

scan angle limits which must be applied in order to ensure minimum recorded

radiance error over the angular range used. In the case of sensing systems

with large scan angle limits (such as the NOAA AVHRR) the larger the usable

angular range, the more frequent the available coverage over a given area

under cluudfree conditions is likely to be. Practical economic and logisti-

cal advantages obviously accrue from using as much of an image as possible.

t
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The NOAA AVHRR has scan angle limits of + 54 0 across a 2048 pixel

swath. The pixels are 1 tan x 1 km at nadir, but increase greatly (by a

factor of >6) at extreme scan angles52.

Two examples of the observed variation in radiance from an AVHRR

image collected during this project on an apparently perfectly clear day

are shown in Fig. 18 for agricultural terrain and forest in the north

central United States imaged on Julian dates 187 and 192 1981 (nadir over

Illinois). However, as will be mentioned later, there is no way to be

sure that haze, cirrus and unresolved cloud were not present in part(s)

of the image. Fig. 19 shows the scan-angle dependence for an image in

which some popcorn cloud and haze were present at large scan angles. Here,

the variations in recorded scene radiance at view zenith exceeding + 250

are probably due to a combination of cloud and cloud shadow 
51.

It is seen that the scan angle-dependence of the recorded radiance and

of the vegetative index (VIN) generated from the recorded radiances in

AVHRR bands 1 and 2 (in this case

VIN 1	
AVHRR 2 - AVHRR 1

AVHRR 2 + AVHRR 1

show the same general behavior as the simulated data.
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6. Experimental studies: empirical studies of target radiance

The NOAA image tapes were mounted by Lockheed (G. Ryland) and screened

for cloud. Those images which were free from cloud for a 50 line swath

across the image, over the North Central and Central USA were selected for

analysis. Cloud always appeared somewhere, above or below the swath used.

The data used was from Global Area Coverage (GAC) tapes, in which four

pixels were averaged out of every sequence of five on every third scan

line. The cloud screening process was achieved empirically (by eye) using

the USDA interactive computer (II DACS system). The averaged "representative

pixels" on the GAC tapes were displayed in false color. The gains and off-

sets were so adjusted to produce optimum apparent feature separation and

each image was photographed for subsequent reference. Selected images were

written to disk for subsequent analysis.

This form of analysis suffered from the drawback that only visibly

detected cloud (white pixels or pixels which were so low in color saturation

as to probably be cloud) was used as a criterion for image acceptance or

rejection and for swath location. Another difficulty was in the determina-

tion of exactly what treatment the tape had had in prior processing. Some

images were archived in the belief that they were raw data (i.e. unaffecteo

by pre-processing) when in actual fact, vertical striping lead to the dis-

covery that they had been "sun angle corrected" (modified with a cosine

factor). While this was a useful correction for FAS, in this instance it

served as a complication for us (thus proving Sevareid's Law: "The chief

cause of problems is solutions").



Close examination was made of five swaths on a total of four separate

GAC images out of the many screened. The screening was a lengthy process,

involving many tape mounts. This occupied many sessions. For administra-

tive reasons, it was necessary that these sessions on the FAS computer be

performed by Lockheed.

After selection. of the swath, the radiance values were averaged for

all fifty consecutive (GAC) lines. The mean of each set of eight sequential

GAC pixels was averaged for 50 GAC lines and plotted as a function of scan

angle. The dates of the images used are shown in Table 2. Typical curves

are shown in Figs. 20-39. Curves for the pooled data are shown in Figs.

40-43. The pooled data include one set which is not shown in Figs. 20-39.

Each successive sequence of four diagrams shows, respectively, the mean

relative recorded radiance in AVHRR 1, the mean relative recorded radiance

in AVHRR 2, VIN 1 and VIN 2	 each variable is expressed as a function

of scan angle (on the diagram the angle is expressed in radians).

It is clear that there is a scan angle dependence of all of these

variables and that, indeed, even VIN 1 (a variant of which has been used

by FAS as an algorithm to screen cloud) is scan angle-dependent. It is

further apparent that the scan angle dependence appears to be of the same

form in each case (i.e. for each swath).
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Computer curve fits were run on all of the data sets shown in Figs.

20-43 and the coefficients of the fitted curves are given in Tables 3-6.

It is seen that the coefficients are not the same but are somewhat

similar. More work needs to be done on a larger data set, although the

results are suggestive of an "average curve" which may be fitted, result-

ing in a predictable maximum error in radiance or VIN at a given scan

angle.

This method of analysis suffers from the disadvantage that the target

may vary across the viewed area, although the viewed region always consisted

of farmland under crop (with a closed canopy) and forest. In order to deter-

mine whether the scan angle-dependence of the radiance and of the VINes

(shown in Figs. 20-43 and in Tables 3-6) was indeed target dependent, like

areas were each examined from different view angles. using data obtained

on different days. The radiance values are shown plotted against view

angle in Fig. 44 for a mixed forest. The analyzed area consisted of over

300 pixels, except for one image where the viewed area was close to the end

of the scan line and so consisted of only about 60 pixels, whose dimensions

h
were much larger than those of the nadir pixels " . There is clearly a

strong Rcan-angle dependence of AVIIRR 1 and of AVNRR 2: the farm of the

dependence is the same as that observed using; the previous method of

analysis. Again, much more work is needed.

The third band of the AVIIRR was also used in an experimental sense to

detect tenuous	 cloud, cirrus and haze. It is thought that lower tempera-

tures would occur over cloud and that for this reason, the thermal infrared

i



channel would be useful in detecting cloud. Visual examination of the

data on the interactive computer tends to support this argument, as does

a study of the averaged GAC 50 band swath for AVH%R 3 in conjunction with

averaged AVHRR 1 and 2 values. However, it i& too early to be sure at

this stage how useful this approach will be.

An interesting approach suggested by V. Whitehead 
56 

is that the

variance of the radiance and VIN data, expressed as a function of scan

angle, will depend upon the presence of cirrus, haze and tenuous cloud.

While the approach appears promising, more work is needed before conclu-

sions may be safely drawn.

1.
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7. Effects of random variability on target discriminability and

gratification.

There are two components to target radiance variability. The first

is systematic; and the more we know about the system, the better our

calibration for this component will be. This systematic variation in

target radiance will arise due to sun-target-sensor geometry, percent-

age of cloud or haze in the pixel and atmospheric backscatter. The

random components will be due to: (a) topographic variations causing

local changes in shadowing and sun-target-sensor geometry variations;

(b) pixel composition variation; (c) wind causing changes to canopy

morphology; (d) random atmospheric variations (e.g., aerosol content

and density distribution); (e) irradiance fluctuations at the target

to name only some of the causes. In this section, we consider only

random variations in irradiance and in target reflectance. The follow-

ing is an abstraction of a recent work by Duggin.58

Variations in surface reflectance and in irradiance and atmospheric

transmission in bandpass r are noise, and place limits on the minimum

signal difference necessary for target discrimination. We concentrate

in this study on the noise components introduced by surface reflectance

variability, by variability of solar irradiance at the target and by

atmospheric transmission variability.

The irradiance falling upon the target varies with solar elevation

in a diurnal fashion, but the spectral distribution of the irradiance

also varies. Besides the diurnal variation, there is also a high fre-

quency variation, of unknown period (Duggin41).

Duggin41 determined the coefficient of variation of the global

irradiance about a diurnally varying value for several days' measurements
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for select2d wavelen, hs and for the Landsat MSS bandpasses. The data

were pooled over several days, and the suosary results are shown in

Table 7.

As shown by Duggin41,58 , the 95% confidence interval on the de-

tected mean radiance difference between n pixel pairs in targets P and

Q is:

(Lr )p - (LO Q 	+ HW	 (Lo p - tLr)Q
	 -{1)

where {Lr )p - mean radiance detec t--.: from n pixels in target P

(Lr) Q - mean radiance detected from n pixels in target Q

	

HW ^(Lr)P - (Lr)Q- 
t0 .5,m	

Q (Lr)P 2 + 
Q (Ld	 2

L	 T
	 -(2)

where (e.g.) a (Lr)p denotes standard deviation of the radiance (Lr)p

from a pixel in target P and HW denotes half the width of the 95% confi-

dence interval on the difference [(Lr)p - (Lr) Q' . In order to sep-

arate the targets P and Q with a 95% confidence of being correct, on

the basis of the difference between the mean radiances, then

[(Lr)P  - (Lr ) Q, must be equal to or greater than HW [aop  - ao d

t0.5,m is the student factor, where (m + 1) is the number of observa-

tions used in estimating v (LO P and a (Lr) Q . Here, the larger the

variability in the radiance reaching the sensor from target P or from

target Q in bandpass r, the larger the value of HW [(Lr)p - (Lr) Qj .
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Now Lr	 Er	 Tr	 + (Lpath)r	
-(g)

(e.g. 41

where Lr detected radiance in bandpass r

Pr bidirectional reflectance '_u bandpass r	 "=

Tr atmospheric transmission in bandpass r

(Lpath) r ' atmospheric backscatter (path radiance) in bandpath r

and	 Er = global irradiance in bandpass r

So if path radiance across the scene is assumed constant and if the

coefficient of variation (standard deviation divided by the mean) of

solar irradiance on the target is assumed approximately equal to the

coefficient of variation of the atmospheric transmission, then (assuming

that the path radiance is approximately constant): -

2	 2	 2
a(LO	 2	 Q(Er)	 a(Pr)

+	 —
(Lr)	 Er	 pr

L

and (2) and (4) give

to.	 ,m
HW	 (Lr)P - (Lr)Q

(Lr)p 2 (! ( Er) 1 2 +	 y(^r)	 2

r n

Zr

pr	 P

2
	

2
+ 

(LO	

2	 Q E
t)	

-(5)

r
	

pr 	 Q

-(4)
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which is the minimum necessary radiance difference at the sensor for a

discrimination of P and Q (on the basis of the difference in mean pixel

radiance in bandpass r) with a 95% confidence of being correct.

In the computation of vegetative indices (VINs), combinations of

radiance values in different bandpasses are used. These are either addi-

tive or multiplicative, or a combination of both. It is our purpose in

this section to discuss the difference in VIN which must exist before two

vegetated areas may be said to differ with a 95% confidence on the basis

of the difference in VIN.

The differences in VIN which must exist between groups of n pixels

in two vegetated targets before the canopies may be said to differ

(e.g. healthy vs. stressed) will depend upon the variability of the

surface reflectance and upon the variability of the irradiance upon the

ground target. Cver uniform target areas, discrimination will be more

accurately performed for large numbers of pixels located in each target

area.

As was pointed out in the previous section, the spectral. reflec-

tance indicatrix depends strongly on the sun-target-sensor go.ometr).

This means that the variations in reflectance properties of the surface

could vary from one set of angular conditions to another: [Q(pr)

L 
p

could well depend upon solar zenith and azimuth angle and upon scanner

look angle for any bandpass, altering HW ( LOP - (Ld Q 1 . Insuffi-

dent data exist to explore this possibility at present.

Equation (5) deals with target separability on the basis of radi-

ance falling on the sensor. However, it has been pointed out above
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that the spectral response of the sensor across its nominal bandpass

interacts with the spectral response of the target. Therefore, strictly

speaking, equation (5) would need to be rewritten so that the detector

(outputs were considered, rather than radiance incident on the detector.

Thn purpose of this section is to demonstrate the relative importance

of surface reflectance variability and atmospheric variability in deter-

mining miniirom necessary differences in scene (upwelling) radiance at

the sensor to produce differences in sensor output adequate for target

discrimination (with a 95% confidence). We therefore consider the

sensor-target interaction to determine whether despite These interactions

and variations, detection and quantification of vegetative disease sever-

ity is feasible using Landsat digital remotely sensed data. Similar

approaches would be applicable to any sensor.

Calculations have been performed using reflectance measurements

made with a pair of calibrated Exotrch model GTR-100 radiometerE on

agricultural targets (e.g.57).

The sampled area was 1 m in diame ter in each case and sar •.pled areas

were 80 m apart in order to make it possible to relate the variability

of the ground data to the Landsat MSS data. The target was an agricul-

tural area in NSW which was measured as part of a previous experiment.

Tables 8-10 show the hemispherical-conical reflectanr2 values in each

band and the number of observations (n) fre- which the mean and coeffi-

cient of variation (standard deviation divided by .he mean) are calcu-

lated.

N



troradlometers with 25 nu bypass, rather than fixed band radiometers.

It is, therefore, likely that these figures may be handpass-Independent

to a first order of approximation.

Relative, mean normalized sensor output values (NSO were calcu-

lated (using the method of (e.g.) Duggin, Slater and Somers 
44 

for the

1.andsat-3 multispectral scanner (MSS) viewing at nadir (zero scan angle)

soybean targets affected with rust at different levels of severity

(Casey and Duggin, unpublished data). The means of the values calcu-

lated for the six different channels (each with its own spectral re-

sponse) in each of the different bandpasses were considered. The rela-

tive VIN values shown in Table 11 were obtained for a 450 solar zenith

angle: a clear (perfectly transmitting) atmosphere was assumed. These

data may be used to calculate the difference in recorded digital VIN

values over healthy and unhealthy soybean targets which would be re-

quired to perform a target discrimination with a 959 probability of

being correct. It was assumed that 30 adjacent pixels were filled with

each target.

For discriminations using a vegetative index, equation (5) may be

written as equation (b) where the VIN is a combination of recorded radi-

ance in MSS 5 and MSS 7 (MSS 7/MSS 5). The coefficient of variation of

_ ._	 _	 L
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reflectance in both bands is approximately 0.10 (from Tables 2-4), and

the irradiance variability is derived from that obtained in MSS bands

5 and 7 (Table 1) for an accumulation of several days' data.

2 	 2	 ^

HW VIN (P)-VIN (Q) = t0.05 , 29	 (VIN (P)	 rA+Bp] +(VII4(Q)

	

[A+BQ]

	

30	 `	

-{6)

Here, P refers to the healthy soybean target and Q refers to the

stressed soybean target.

	

a(ES) 2	 a(E7) 2
where A = 2	 _	 +	 _

ES	 E7

if E5 irradiance in MSS band 5 (600-700 nm)

and E7 = irradiance in MSS band 7 (800-1100 nm)

and where, if P5 - (hemispherical-conical) reflectance in MSS band 5, while

P7 = reflectance in MSS band 7.

COO 2
Bp _

5

B
Q( P5)	 2
_

Q	 P5

	

^(P7)	 2+ _

P7
P

	

+ a(P7)	 2

P7

Q

Let
	 a(P5)

	
/ 
C107)	 o(P5)
	

Q(P7)	 y	 0.10

PS 
P
	 P7 

P	
P5 

Q

	 P7 Q

M
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Then BP B  = 2	

Q(p5) !
	 - 2 x 10 2

P5 -I P
{
3

and A - 2 &0405)
2 
 + (.0731) 2}	 1.397 x 10-2

using for data in Table 11, t0.05,29 - 2.00.

In Table 12, we show the VIN (MSS 7/MSS 5) differences which were

calculated to exist between soybean canopies with different rust sever-

ity levels. We also show the calculated minimum necessary differences

for rust severity discrimination at the 95% confidence level, using

VINs calculated for the mean radiance from 30 pixels in each severity

region. One may c,nclude that rust severity discrimination and quanti-

fication, at least for the soybean targets considered here, is indeed

possible at the 95% confidence level using Landsat VIN data.

However, the important conclusion is that there is an excellent

chance that stress (in this case rust in the soybean canopy) can (at

least in some cases) be detected using Landsat data. It is likely that

the augment would be similarly successful if applied to the AVHRR data

(assuming that the stressed area is large enough to detect). There is

a possibility of stress quantification. More work needs to be done for

various targets and for various sun-target-sensor geometries.
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8. The rife}ct; of urea 8olvod ;(sub-pixel shad) cloud on recorded radtancr.

While the presences of cloud can increase the radiance levels in

the individual bandpasmes to the visible and in the reflective infra-

red region*, a decreases in temperature to recorded in the mid-infrared

region am rosy he seen for example in Fig. 45. Indeed, tmperature is

one of the methods of measuring the presence of cloud; and it is an.i-

etpated that by studying simultaneously the visible. reflective- and mid-

infrared region for each pixel. prnpremm will he made in the detection

of suh-pixel-mitred (i.e, of unresolved) cloud.

Unresolved cloud can rain+ difficulties in mapping and quanttfytng

ground featuroN. Since cloud detection algorithms are successful only

for lovels of cloud coot,-tined within a pixel which excoetl a certain

value, undrtectod clotatt and hale can distort the level and the spevtral

(i.e. between-ehannol) distribution of radiance from targets. That Is.

nnrrsolvod cloud can alter the radiance at wavelength a from A Riven

pixel. because unremolveti cloud can alter the apparent reflectance fac-

tor of the- Around area imagvt within a ptxol in the manner drseribod by

the following equation.

R(ss.y+;t► '.''.) -	 `' };(..;ts'.',l)m x am x ( 1 °aclatatt) + R(\),	 x Ac loudloud	 t laud
m

whirr R(.^ ;ts'.^+'.)) to the effective- ovor'a11 sltet • tral hemispherical-couival

reflectance factor for the pixel for the stun-target-sensor petmetry shown

in Fiji, 1 and where there are m components (cover tvpvs) at ground level,

cavil with a sPevtral hemisl+herical-rastit:al reflectance factor (for the

same goomotry) R(r.^;tt'.y \1 and each of which occ kill tos A l+roport toll
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(fraction) of the pixel am at ground level. The ground area giving

rise to the pixel under consideration is partly covered by an inter-

vening layer of cloud, with diffuse (and, therefore, geometrically in-

dependent) spectral reflectance factor 
R(a)cloud* 

The cloud covers a

fraction 
acloud 

of the discussed pixel. While it may not be exactly

correct to refer to clouds as strictly diffuse (i.e. Lambertian)

reflectors, it is a close approximation.

Equation (2) shows, on substitution into equation (1) (section 4),

that the greater the percentage of the pixel covered by cloud, the

higher the overall radiance levels. However, in the case of vegetation,

due to the far lower reflectance of the plant canopy in the visible part

of the spectrum than in the reflective infrared, the presence of cloud

can alter the ratio of the apparent near infrared reflectance to the

visible red	 reflectance of the area included within a pixel. Since

vegetation is frequently monitored on a repetitive basis using satellite

scanner data, methods have been developed by which combinations of radi-

ance recorded in different scanner channels are combined into a "vege-

tation index". Such an index is not onl y sensitive to the nature and

vigor of vegetation, but because it is unidimensiona' data, it is also

simpler (and cheaper) to anal yze (for repeated coverage of large areas)

than multichannel data clustered in multidimensional feature space.

The vegetative index
VIN 1	 (AVHRR 2 - AVHRR 1))

has been used 
59 

to screen the AVHRR digital radiance] data in AVHRR hands
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1 and 2 for eland. When cloud is present, to the extent that it largely

fills the IFOV or the sensor (pixel), VIN 1 becomes negative. however,

[	 calculations for nadir viewing show that for a clear atmosphere and for

targets consisting only of wheat, VIN 1 will not became zero until 332

of the IFOV is filled with cloud. This figure becomes 39% for a turbid

atmosphere. For a target consisting of 70% wheat and 30% soil, the

f	

percentages of the FOV which must be filled with cloud to make VIN 1

t	 zero are 24% for a clear (meteorological range >50 km) atmosphere and

31% for a turbid (meterorological range <10 km) atmosphere. This is

shown in Fig. 46. For small percentages of cloud contamination in the

AVHRR IFOV (1 km x 1 lam at nadir), there can be a very substantial change

produced in the spectral signature of the recorded radiance. Calculations

of VIN 1 performed for a range of view zenith (scan) angles are shown in

FIg. 47 (clear atmosphere) and Fig. 48 (turbid atmosphere). For a clear

atmosphere and a target which is 100% wheat, substantial decreases (over 30%

at nadir) are caused by each 10% of the FOV obscured by cloud. The effect

is even worse (over 60% at nadir) for a targc~. which is composed of 70%

wheat and 30% soil. The effects for a turbid atmosphere are seen (Fig.

48) to be as great. The scan angle effect for a clear atmosphere is

assymetric about nadir and causes an increase of up to approximately

50% above the nadir value at 8' - +- 540 . Atmospheric turbidity reduces

this effect.

A commonly used vegetative index is, as mentioned earlier,

VIN 2 -	
AVHRR 2 -_AVHRR 1
AVHRR 2 + AVHRR 1

Figs. 49 and 50 show the effects of both a clear and turbid atmosphere

and scan angle on this vegetative index, calculated in each case for a



pure wheat and for a 70% wheat, 30% soil target. For a clear atmosphere

(Fig. 49), the presence of 20% cloud produces a five-fold decrease, or

worse, in vegetative index at all scan angles for both the pure and for

the mixed targets. Fig. 50 shows that for a turbid atmosphere, the

effect is almost as bad, although atmospheric turbidity has reduced the

apparent scan-angle effect in the recorded signal. Less than 25% of

cloud in a pixel will not be detected during screening of the AVHRR

data, using VIN 1, despite the large effects of such cloud on the vege-

tative indices. Effects on VIN 1 and VIN 2 due to sub-pixel sized cloud

can give rise to substantial errors in assessment of ground cover type

and conditions.

While the above findings are provocative, they refer to

only two targets. More calculations and comparison with experimental

data is required. Further work could definitely help develop algorithms to

screen out cloud and haze. Clearly, the effect of variable quantities

of unresolved cloud and haze will be the same as random variations in

target radiance, caused by random variations in irradiance on the tar-

get and reflectance of the target.



Using equation (1), calculations were performed for the wheat

canopy at growth stages 3.5 (boot) and 4.5 (fully headed) on the modi-

fied Feeks scale. Reflectance factor data was obtained from the LARSPEC

data files 
49.60 for sun-target-sensor geometries equating to NOAA-6 and

to NOAA-7 overpass times.

The results of the calculations of sensor output are shown is FiRs.

51-74 for the AVHRR radiance values. Discontinuities in the predicted

sensor output at nadir are due to errors within the LARSPEC data, since

the values were obtained from measurements made at different times.

The trends in simulation studies are generally the same as those

observed empirically in the radiance data. In order to draw detailed

conclusions from this approach, it will be necessary to have reflec-

tance factor data from mathematical models of vegetation canopy, which

have been calibrated using experimental data. In this case, it would

be possible to compute predictive contrast ratios between the target

and its surroundings for various AVHRR geometries. However, much more

work is needed here which could usefully form the basis of a further task.

However, certain conclusions may be drawn from the study:

1. There is a scan-angle dependence of the digital radiance data

recorded in each AVHRR channel.

2. The sensor output is sensor dependent. In other words, the

output of the NOAA-6 and -7 AVHRR's over the same target will

differ (due to the different sensor spectral responses).

3. There appears to be a growth-stage dependence of the scan-angle

dependence of sensor output. This would suggest that any



empirical data normalization algorithms would need to have

a factor allowing for growth stage.

4. There is a strong angle dependence of the VIN1 - (AVHRR 2 -

AVHRR 1) which is used at present for screening out cloud from

the AVHRR digital data in pre-processing. This will further

reduce the value of this algorithms for screening cloud from

an image.

5. The VIN2 - AVHRR 2 - AVHRR 1	 is growth stage dependent, is
AVHRR 2 + AVHRR 1

scan angle dependent and is dependent on atmospheric turbidity.



-3A-

Of POOR QUALITY

10. Conclusions and Recommendations

There is a present need to operationally use NGAA AVHRR data to
F

map and to monitor vegetation types and conditions in near-real time.

This task can be greatly enhanced if it is possible to use a greater

portion of each GAC image than the central 252 now in use. Empirical

and simulation studies suggest that an enlargement of the "cloud-free"

image data set will permit the development of a series of correction

algorithms, by means of which the digital scanner imagery may be cor-

rected for ground reflectance and for atmospheric scattering anisotropy,

within certain accuracy limits. The acquisition of a larger data set

will provide an estimate of the accuracy limits.

The sensor outputs, representing recorded radiance values in spec-

tral handpasses defined by AVHRR 1, AVHRR 2 are not only scan angle

dependent, but are also dependent on growth stage and on sensor spec-

tral response. Therefore, any empirical correction algorithms used to

normalize the digital radiance or VIN data will need to contain factors

for growth stage and for instrument spectral response.

There is a need to improve the screening algorithms for cloud, since

presently used algorithms still do net screen out pixels which are con-

taminated by cloud and which can, therefore, show vegetation indices

distorted by factors of over two. The algorithm presentl y used to screen

cloud has been shown in Simulation studies to he strongl y scan angle de-

pendent. which thus reduces its value.

While it may he possible to normalize out s ystemattc effects in

AVHRR data, it i-. not possible to correct in anv way for rar;dom functu-

ations in target radiance. However, it is possible to estimate the
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necessary radiance difference between targets in order to be able to

E,	 provide target discrimination and quantification within pre-determined

limits of accuracy. More work is needed in this area in order to be

able to estimate the target dependence and scan angle dependence of

the radiance difference needed to discriminate and to quantify targets

with pre-determined confidence limits.

Du: to difficulties in obtaining time on the USDA computer in

Houston, since there are many operational demands on this installation,

a larger image data set will be examined than has previously been pos-

sible. We shall use a contract facility. Not only will swaths across

the CAC images be examined, but further selected targets will also be

examined from different view angles by using sequential overpass data.

NASA/USDA will provide copies of the GAC data for this purpose.

There is a need to determine to what extent selected vegetation

targets can be identified and their condition quantified using digital

AVHRR data, given that systematic error correction will not be precise

and that random errors occur in the AVHRR data. This problem should

be examined using appropriate statistical methods.

A major difficulty exists in lack of documentation of pre-process-

ing algorithms used on AVHRR digital data. This resulted in extra time

taken in this project due to a misconception of those algorithms which

it was thought had been used. It is respectfully suggested that this

area might receive attention.
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1.(a) Typical values of atmospheric extinction
optical thickness for a clear atmosphere
(meteorological range >50 km) and for a
turbid atmosphere (meteorological range
< 10 km)

1.(b) Path radiance calculated for various view
zenith (scan) angles (3 1 ) for both the
upsun ( (^'-^)-00) and for the downsun
(W -^)-1800) positions

2. Images used in empirL-al analysis of
digital AVHRR data

3. Best fit curve for GAC mean radiance data
in AVHRR 1 plotted agairssc scan angle 8'

4. Best fit curve for QX mean radiance data
in AVHRR 2 plotted against scan angle 8'

5. Best fit curves	 r vegetative index VIN 1
from mean AVHRR , '.ate (AVHRR 2 - AVHRR 1)
plotted against scan angle 8'

6. Best fit curve for ve etative index VIN 2
from mean AVHRR data	 AVHRR 2 - AVHRR 1

AVHRR 2 + AVHRR 1
plotted against scan angle @'

7. The average values for coefficients of
variation of global irradiance

8. Coefficient of variation (X) of measured
_ hemispherical-conical reflectance factor

in MSS bandpasses approx. 8 weeks before
harvest

9. Coefficient of variation (%) of measured
hemispherical-conical reflectance factor
in MSS bandpasses approx. 5 weeks before
harvest

10. Coefficient of variation (%) of measured
hemispherical-conical reflectance factor
in MSS bandpasses approx. 3 weeks before
harvest

11. Mean calculated sensor outputs and VIN
(-MSS 7/Mss 5) for the Landsat-3 MSS
when viewing a soybean target in various
stages of stress

12. VIN (-MSS 7/MSS 5) differences calculated
from simulated (MSS) sensor outputs for
different rust severity levels and VIN
differences which would be necessary for
discrimination at the 95% level of confi-
dence
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14. FIGURE CAPTIONS

1. Geometric nomenclature in consideration of reflectance properties.

2. Spectral reflectance factor of wheat at growth stage 3 . 5. (Boot).

NOAA-6-AVHRR geometry: upsun viewing (i.e., looking towards sun).

3. Spectral reflectance factor of target in Fig. 2, but for downsun
viewing (i.e., looking away from sun). NOAA-6-AVHRR geometry.

4. Spectral reflectance factor of wheat at growth stage 3 . 5 (Boot).
NOAA-7-AVHRR geometry: upsun viewing.

5. Spectral reflectance factor of wheat at growth stage 3 . 5 (Boot).
NOAA-7-AVHRR geometry: downsun viewing.

6. Spectral reflectance factor of wheat at growth stage 4 . 5. NOAH-6
AVHRR geometry: upsun viewing.

7. Spectral reflectance factors of wheat at growth stage 4 . 5. NOAA-6
AVHRR geometry: downsun viewing.

8. Spectral reflectance factor of wheat at growth stage 4 . 5. NOAA-7
AVHRR geometry: upsun viewing.

9. Spectral reflectance factor of wheat at growth stage 4 . 5. NOAA-7
AVHRR geometry: downsun viewing.

t

t

14a. Solar zenith angle dependence of spectral global irradiance.

14b. Solar zenith angle dependence of ratio of diffuse to total spectral
global irradiance.

15. Wavelength-dependence of factors controlling remotely sensed radiance.

16. Spectral response curves of first two bandpasses of NOAH-6 AVHRR.

-43-

+ Figures 10-13 omitted as policy decision during final collation.
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17. Simulated sensor output for NOAH-6 AVHRR at various scan angles.
Target is wheat at growth stage 4 . 5. Vegetative index shown is

AVHRR 2 - AVHRR 1

AVHRR 2 + AVHRR 1

18. Observed mean radiance variation across image; obtained using 50
averaged, sequential bands of GAC (global area converge) data.
Images used were obtained on a clear day.

19. Observed mean radiance variation across images; obtained using 50
averaged, sequential bands of GAC data. Some cloud and haze present
on image.

20 - 43. Sets of 4 sequential curves for observed mean radiance obtained
by averaging 50 sequential scan lines of GAC data and presenting
the mean of each 8 sequential GAC pixel radiance or VIN values
plotted as a function of scan angle 8' expressed in radians. The
sequence consists (respectively) of radiance recorded in AVHRR 1,
radiance recorded in AVHRR 2, VIN 1 - (AVHRR 2 - AVHRR 1) and
VIN 2 - 

fAVHRR
VHRR2 - AVHRRj 

.There are five images which have been
 2 + AVHRR 1

analyzed, constituting the first five (5) sequences of four (4) curves
each, followed by a sequence of the pooled data. In each case, the
best fit quadratic curve is shown on the scatter plot and the coeffi-
cients of each best-f it curve are shown on the plot.

44. Radiance recorded in AVHRR 1 and AVHRR 2, plotted as a function of
scan angle. Data was obtained over the same forested target from
different (sequential) images.

45. Scan angle dependence of first three bands of the NOAA AVHRR.

46. VIN 1 = (AVHRR 2 - AVHRR 1) simulated for view angle - 0 (nadir) for
a pure wheat and for a 70% wheat, 30% soil target for various percent-
ages of the pixel filled by cloud. Both clear and turbid atmospheres
are considered.

47. VIN 1 = (AVHRR 2 - AVHRR 1) calculated for both pure wheat and 70%
wheat, 30% soil targets. A clear atmosphere is considered and the
effects of scan angle are shown for various percentages of pixel
obscured by cloud.

48. VIN 1 - (AVHRR 2 - AVHRR 1) calculated for both pure wheat and 70%
wheat, 30% soil targets. A turbid atmosphere is considered and the
effects of scan angle are shown for various percentages of pixel
obscured by cloud.

i
4
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49. VIN 2	 AVHRR 2 - AVHRR 1 calculated for both pure wheat and 702 wheat,AVHRR 2 + AVHRR 1

302 soil targets. A clear atmosphere is considered and the effects of
scan angle are shown for various percentages of pixel obscured by cloud.

50. VIN 2 - AVHRR 2 - AVHRR 1 calculated for both pure wheat and 702 wheat,AVHRR 2 + AVHRR 1

302 soil targets. A turbid atmosphere is considered and the effects
of scan angle are shown for various percentages of pixel obscured by
cloud.

51 - 62. Simulated scan angle-dependence of wheat at various growth stages
for clear (meteorological range >50 km) and for turbid (meteorogolical
range <10 km) atmosphere, calculated for NOAA-6 and NOAA-7 AVHRR bands
1 and 2 as marked.

63 - 68. Simulated scan angle-dependence of (AVHRR 2 - AVHRR 1) for targets,
atmospheres and sensors considered in Figs. 51-62, as marked.

69 - 74. Simulated scan angle-dependence of ^AVHRR 2 - AVHRR 1^ for
AVHRR 2 + AVHRR 1

targets, atmospheres and sensors considered in Figs. 51-62, as marked.

--
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Table 1(a). Values of Atmospheric Extinction

Optical Thickness Used

ATMOSPHERE X - 0.65 pn X s 0.90 pm

"CLEAR"

"TURBID"

.074

.445

.033

.313

4



- .650 pm a - .900 pm

o - 00	 0 - 1800 0 . 00 0 - 1800

.894	 .977 .330 .344

.845	 1.099 .325 .368

.841	 1.276 .337 .415

SCAN ANGLE 8 1 ATMOSPHERE

50
	

"CLEAR"

150

250
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Table 1(b). Path Radiance (mgr cm 2 sr 1 Um -1 )

2.915 3.047

2.938 3.379

3.187 4.102

2.590 2.624

2.599 2.734

2.762 3.058

50
	

"TURBID"

150

250
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Table 2. Apparently Cloud-Free Images Used In Analysis.

Ime-e I.D. No. Figures

GAC 18.09 (lines 450-500) 20 - 23

GAC 18.10 (lines 500-550) 24 - 27

GAC 18.02 (lines 450-500) 28 - 31

GAC 18.01 (lines 500-550) 32 - 35

GAC 18.01 (lines 450-500) 36 - 39

r

ii

3
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Table 3. Best fit curves for GAC mean radiance data in AVHRR 1
plotted against scan angle (y ! so + a ix + a2x2).

Image I.D. No. so al a2

GAC 18.09 (lines 450-500) 3.50 1.82 9.62

GAC 18.10 (lines 500-550) 3.91 0.662 9.79

GAC 18.02 (lines 450-500) 2.13 0.0699 4.86

GAC 18.01 (lines 500-550) 2.28 1.27 4.03

GAC 18.01 (lines 450-500) 2.73 -0.0704 5.01

Pooled Data 2.97 0.633 7.52
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Table 4. Best fit curves for GAC mean radiance data in AVHRR 2
plotted against scan angle (y - so + a IX + a23t2).

Image I.D. No. so ai a2

GAC 18.09 (lines 450-500) 9.22 1.59 6.40

GAC 18.10 (lines 500-550) 9.08 0.338 5.96

GAC 18.02 (lines 450-500) 5.62 -0.296 3.02

GAC 18.01 (lines 500-550) 5.76 -0.224 3.84

GAC 18.01 (lines 450-500) 6.27 -1.20 4.14

Pooled data 7.48 0 . 00402 5.17

^f
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Table 5. Best fit curves for VIN 1* from GAC mean radiance data
plotted against scan angle (y - ac + six + six 

2).

Image I.D. No. so al a2

GAC 18.09 (lines 450-500) 5.72 -0.227 -3.22

GAC 18.10 (lines 500-550) 5.17 -0.325 -3.83

GAC 18.02 (lines 450-500) 3.50 -0.366 -1.85

GAC 18.01 (lines 500-550) 3.48 -1.49 -0.192

GAC 18.01 (lines 450-500) 3.55 -1.13 -0.869

Pooled data 4.50 -0.629 -2.36

*VIN 1 - (AVHRR 2 - AVF- R 1)
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Table 6. Best fit curves for VIN 2* from GAC scan radf ance data
plotter! against scan angle (y = ao + s ix + six 2).

Image I.D. No.	 as	 al	 a2

GAC 18.09 (lines 450-500)	 0.437	 -0.0618	 -0.431

GAC 18.10 (lines )00-550)	 0.380	 -0.0248	 -0.419

GAC 18.02 (lines 450-500)	 0.431	 -0.0213	 -0.391

GAC 18.01 (lines 500-350)	 0.433	 -0.162	 -0.263

GAC 18.01 (lines 450-500)	 0.411	 -0.0596	 -0.343

Pooled data	 0.418	 -0.0642	 -0.378

f

AVEIRR 2 - AViiRR 1
AVRRR 2 + AVHRR 1

1

*VIN 2

3
i

L-L-
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Table 7. The average values for coefficients of Variation of global
irradiance. (Duggin 1970.41

	

ISCO	 450 nm	 600 nm	 800 nm	 1050 tun

	

C(Er)	 6.04%	 4.54%	 5.572	 6.22%
Er

(8 days)

EXOTECH	 MSS-1	 MSS-2	 MSS-3	 MSS-4

	

500-600 nm	 600-700 nm	 700-800 nm	 800-1050 nm

Q(Er)
--	 3.62%	 4.05%	 4.68%	 7.317.

r
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Table 8. Coefficient of variation (Z) of measured hemispherical- conical
reflectance factor in MSS bandpasses approximately 8 weeks
before harvest.

MSS 4 MSS 5 MSS 6 MSS 7 n

i	 Sunflower Stubble 18.8 16.7 11.3 12.1 20
Furrowed Soil 5.4 4.8 6.0 7.3 10
Sorghum Stubble 18.7 18.6 14.8 14.0 10
Fertilised Barley (a) 9.8 14.7 11.1 12.9 12

(b) 8.5 11.7 14.1 17.3 10
Unfertilised Barley (a) 9.7 12.6 6.6 7.8 10

(b) 13.1 16.9 6.1 7.7 10
Barley (Late Plant) 5.0 7.1 9.3 11.4 10
Fertilised Barley (Late Plant) 5.4 7.8 6.9 8.5 10
Grass (Sparse) 13.6 13.3 20.3 20.3 10
Pasture (Grazed) 9.0 15.5 10.3 10.6 10
Pasture (Heavily Grazed) 8.1 6.8 6.5 6.3 10

i



tw-

,.

ORIIAC PAGE IS
OF POOR QUALITY

Table 9. Coefficient of variation (X) of measured hemispherical-conical
reflectance factor in MSS bandpasses approximately 5 weeks
before harvest.

MSS 4 MSS 5 MSS 6 MSS 7 n

Fertilized Barley 9.3 9.1 9.4 9.5 20
Barley 14.9 16.1 4.1 14.4 20
Barley 16.6 17.6 5.1 5.5 20
Barley 11.1 11.0 5.1 6.3 20
Barley (Late Plant) 15.0 14.7 11.5 10.4 10
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Table 10. Coefficient of variation M of measured hemispherical-conical
reflectance factor in MSS bandpasses approximately 3 weeks
before harvest.

MSS 4 MSS 5 MSS 6 MSS 7 n

Fertilized Barley 8.3 8.6 4.5 4.2 16

Fertilized Barley 7.7 9.4 18.3 10.2 23

Barley 9.1 9.2 11.0 11.8 26

Barley 8.4 8.1 6.0 5.9 18

Barley 11.2 12.8 15.1 16.0 27

K,,
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Table 11. Mean calculated sensor outputs and VIN (- MSS 7/MSS 5) for the
Landsat - 3 MSS when viewing a soybean target* in various stages
of stress.

MSS 5 MSS 7 VIN

Healthy Soybean 69.82 430.80 6.170
Soybean 2.08% rust 79.56 330.11 4.150
Soybean 4.11% rust 80.03 315.06 3.940
Soybean 7.46% rust 81.82 288.39 3.520
Soybean 11.5% rust 93.48 211.35 2.260

*Spectral reflectance data were measured by Casey and
Duggin, (unpublished data).
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Table 12. VIN (- MSS 7/MSS 5) differences calculated from simulated (MSS)
sensor outputs for different rust severity levels and VIN
differences which would be necessary for discrimination at the
95% level of confidence.

VIN	
Necessary A (VIN)

A (VIN)	 for 95% confidence
(MSS 7/MSS 5)	 of discrimination

Soybean: healthy 6.17
2.02 0.50

Soybean: 2.08% rust 4.15
0.21 0.39

Soybean: 4.11% rust 3.94
0.42 0.36

Soybean: 7.46% rust 3.52
1.26 0.28

Sovbean:
I

11.5% rust 2.26
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