67 research outputs found

    Persistent Neuroadaptations in the Expression of Genes Involved in Cholesterol Homeostasis Induced by Chronic, Voluntary Alcohol Intake in Rats

    Get PDF
    Alcohol use disorder (AUD) is associated with persistent adaptations in the brain that are believed to participate in the long-lasting vulnerability to relapse after abstinence. Cholesterol, the major sterol compound found in the central nervous system (CNS), plays a major role in maintenance of neuronal morphology, synaptogenesis and synaptic communication and may be involved in alcohol-induced neuroadaptations. In this study, we investigated whether alcohol consumption in a two-bottle choice paradigm followed by 3 weeks of abstinence could alter the expression of genes encoding proteins involved in cholesterol homeostasis in brain regions involved in addiction and relapse, namely the prefrontal cortex (PFC), the nucleus accumbens (NAc), the mesencephalon and the amygdala. We found that voluntary alcohol intake followed by 3 weeks of forced abstinence produces changes in the transcription of several genes encoding proteins directly involved in cholesterol synthesis such as 3-hydroxyl-3-methylglutaryl-coenzyme A (HMGCoA) reductase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and farnesyl diphosphate synthase (FDPS) and in its regulation such as sterol regulatory element-binding factor-2 (SREBF2), in cholesterol transport such as ATP-binding cassette subfamily A member 1 (ABCA1) and in cholesterol degradation such as CYP46A1. Interestingly, these changes appeared to be region-specific and suggest that previous chronic exposure to alcohol might durably increase cholesterol metabolism in the PFC, the NAc and the mesencephalon and decrease cholesterol metabolism in the amygdala. Altogether, these results suggest that alcohol consumption leads to durable deregulations in cholesterol metabolism in key areas involved in loss of control over drug use and addiction. These long-term neuroadaptations may participate in the changes in brain structure and functioning that are responsible for the long-lasting risks of relapse to alcohol

    p73α isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells

    Get PDF
    MYCN activation, mainly by gene amplification, is one of the most frequent molecular events in neuroblastoma (NB) oncogenesis, and is associated with increased malignancy and decreased neuronal differentiation propensity. The frequency of concomitant loss of heterozygosity at the 1p36.3 locus, which harbours the p53 anti-oncogene homologue TP73, indicates that MYCN and p73 alterations may cooperate in the pathogenesis of NB. We have previously shown that p73 isoforms are deregulated in NB tumours and that TAp73 co-operates synergistically with p53 for apoptosis of NB cells, whereas ΔNp73 activates the expression of neuronal differentiation genes such as BTG2. Herein, using both ectopic expression and RNA interference-mediated silencing of p73 in MYCN amplified NB cells, we show that p73α isoforms inhibit MYCN expression at both transcript and protein levels, in spite of transactivator effects on MYCN promoter. To explain this paradox, we found that TAp73α exerts negative post-transcriptional effects leading to reduced MYCN mRNA stability. RNA immunoprecipitation experiments suggest that this dominant inhibitory post-transcriptional effect could be due to an interaction between the p73 protein and MYCN mRNA, a hypothesis also raised for the regulation of certain genes by the p53 protein

    The Involvement of SMILE/TMTC3 in Endoplasmic Reticulum Stress Response

    Get PDF
    The state of operational tolerance has been detected sporadically in some renal transplanted patients that stopped immunosuppressive drugs, demonstrating that allograft tolerance might exist in humans. Several years ago, a study by Brouard et al. identified a molecular signature of several genes that were significantly differentially expressed in the blood of such patients compared with patients with other clinical situations. The aim of the present study is to analyze the role of one of these molecules over-expressed in the blood of operationally tolerant patients, SMILE or TMTC3, a protein whose function is still unknown.We first confirmed that SMILE mRNA is differentially expressed in the blood of operationally tolerant patients with drug-free long term graft function compared to stable and rejecting patients. Using a yeast two-hybrid approach and a colocalization study by confocal microscopy we furthermore report an interaction of SMILE with PDIA3, a molecule resident in the endoplasmic reticulum (ER). In accordance with this observation, SMILE silencing in HeLa cells correlated with the modulation of several transcripts involved in proteolysis and a decrease in proteasome activity. Finally, SMILE silencing increased HeLa cell sensitivity to the proteasome inhibitor Bortezomib, a drug that induces ER stress via protein overload, and increased transcript expression of a stress response protein, XBP-1, in HeLa cells and keratinocytes.In this study we showed that SMILE is involved in the endoplasmic reticulum stress response, by modulating proteasome activity and XBP-1 transcript expression. This function of SMILE may influence immune cell behavior in the context of transplantation, and the analysis of endoplasmic reticulum stress in transplantation may reveal new pathways of regulation in long-term graft acceptance thereby increasing our understanding of tolerance

    Highly Variable Sialylation Status of Donor-Specific Antibodies Does Not Impact Humoral Rejection Outcomes

    Get PDF
    Clinical outcome in antibody-mediated rejection (AMR) shows high inter-individual heterogeneity. Sialylation status of the Fc fragment of IgGs is variable, which could modulate their ability to bind to C1q and/or Fc receptors. In this translational study, we evaluated whether DSA sialylation influence AMR outcomes. Among 938 kidney transplant recipients for whom a graft biopsy was performed between 2004 and 2012 at Lyon University Hospitals, 69 fulfilled the diagnosis criteria for AMR and were enrolled. Sera banked at the time of the biopsy were screened for the presence of DSA by Luminex. The sialylation status of total IgG and DSA was quantified using Sambucus nigra agglutinin-based chromatography. All patients had similar levels of sialylation of serum IgGs (~2%). In contrast, the proportion of sialylated DSA were highly variable (median = 9%; range = 0–100%), allowing to distribute the patients in two groups: high DSA sialylation (n = 44; 64%) and low DSA sialylation (n = 25; 36%). The two groups differed neither on the intensity of rejection lesions (C4d, ptc, and g; p > 0.05) nor on graft survival rates (Log rank test, p = 0.99). in vitro models confirmed the lack of impact of Fc sialylation on the ability of a monoclonal antibody to trigger classical complement cascade and activate NK cells. We conclude that DSA sialylation status is highly variable but has not impact on DSA pathogenicity and AMR outcome

    Single-Cell Analysis to Better Understand the Mechanisms Involved in MS

    No full text
    International audienceMultiple sclerosis is a chronic and inflammatory disease of the central nervous system. Although this disease is widely studied, many of the precise mechanisms involved are still not well known. Numerous studies currently focusing on multiple sclerosis highlight the involvement of many major immune cell subsets, such as CD4+ T cells, CD8+ T cells and more recently B cells. However, our vision of its pathology has remained too broad to allow the proper use of targeted therapeutics. This past decade, new technologies have emerged, enabling deeper research into the different cell subsets at the single-cell level both in the periphery and in the central nervous system. These technologies could allow us to identify new cell populations involved in the disease process and new therapeutic targets. In this review, we briefly introduce the major single-cell technologies currently used in studies before diving into the major findings from the multiple sclerosis research from the past 5 years. We focus on results that were obtained using single-cell technologies to study immune cells and cells from the central nervous system

    Biomarkers and possible mechanisms of operational tolerance in kidney transplant patients

    No full text
    International audienceA small number of patients do not reject their graft after weaning from immunosuppressive treatment. Here, we analyze the studies carried out to try to understand the mechanisms involved in this operational transplant tolerance and evaluate the hypotheses proffered on these potential mechanisms

    The amygdala-ventral pallidum pathway contributes to a hypodopaminergic state in the ventral tegmental area during protracted abstinence from chronic cocaine

    No full text
    International audienceBACKGROUND AND PURPOSE: Incubation of craving, the progressive increase in drug seeking over the first weeks of abstinence, is associated with temporal changes during abstinence in the activity of several structures involved in drug-seeking behavior. Decrease of dopamine (DA) release and decrease in DA neurons’ activity (hypodopaminergic state) have been reported in the ventral tegmental area (VTA) during cocaine abstinence but the mechanisms underlying these neuroadaptations are not well understood. Here, we investigated the potential involvement of a VTA inhibiting circuit (basolateral amygdala (BLA)-ventral pallidum (VP) pathway) in the hypodopaminergic state associated with abstinence from chronic cocaine. EXPERIMENTAL APPROACH: In a model of cocaine self-administration, we performed in vivo electrophysiological recordings of DA VTA neurons and BLA neurons from anesthetized rats during early and protracted abstinence and evaluated the involvement of the BLA-VP pathway using a pharmacological approach. KEY RESULTS: We found significant decreases in VTA DA population activity and significant increases in BLA activity after protracted but not after short-term abstinence from chronic cocaine. The decrease in VTA DA activity was restored by pharmacological inhibition of the activity of either the BLA or the VP, suggesting that these regions exert a negative influence on DA activity. CONCLUSION AND IMPLICATIONS: Our study sheds new lights on neuroadaptations occurring during incubation of craving leading to relapse. In particular, we describe the involvement of the BLA-VP pathway in cocaine-induced decreases of DA activity in the VTA. This study adds important information about the specific brain network dysfunctions underlying hypodopaminergic activity during abstinence

    Deciphering the role of TRIB1 in regulatory T-cells

    No full text
    International audienceThe role of regulatory T-cells (Tregs) is crucial to maintain immune homoeostasis by controlling peripheral tolerance. A better understanding in the molecular mechanisms involved in the biology of these Tregs could improve their expansion and selection to treat immune-related diseases, achieve immunosuppression-free organ transplantation and to specifically target them in cancer. We reported on the overexpression of tribbles-1 (TRIB1) in Tregs compared with their counterpart naive T-cells and that TRIB1 interacts with the master molecule of Tregs, forkhead box P3 (FOXP3), a transcription factor essential for Treg suppressive activity. We demonstrated that these two molecules interact together in the nucleus of Tregs and TRIB1 overexpression is associated with a decrease in their proliferative capacities. Since TRIB1 was reported to be overexpressed in the blood of renal transplanted patients with chronic antibody-mediated rejection (CAMR), altogether, these results suggest TRIB1 could be linked to the decrease proportion of Tregs in patients exhibiting CAMR and a key player in Tregs through its FOXP3 interaction. In addition, yeast two-hybrid screening experiments highlighted that TRIB1 potentially interacts with molecules playing roles in intracellular events following T-cell activation and particularly cluster of differentiation (CD)4+ T-cells. This suggests still non explored potential links between TRIB1 in Tregs. Our goal is thus to decipher the role of TRIB1 in the Treg biology, notably in pathways known to involved its partner and main transcriptional factor of Tregs, FOXP3 and to determine the role of TRIB1 in immune pathologies

    Persistent Neuroadaptations in the Expression of Genes Involved in Cholesterol Homeostasis Induced by Chronic, Voluntary Alcohol Intake in Rats

    No full text
    International audienceAlcohol use disorder (AUD) is associated with persistent adaptations in the brain that are believed to participate in the long-lasting vulnerability to relapse after abstinence. Cholesterol, the major sterol compound found in the central nervous system (CNS), plays a major role in maintenance of neuronal morphology, synaptogenesis and synaptic communication and may be involved in alcohol-induced neuroadaptations. In this study, we investigated whether alcohol consumption in a two-bottle choice paradigm followed by 3 weeks of abstinence could alter the expression of genes encoding proteins involved in cholesterol homeostasis in brain regions involved in addiction and relapse, namely the prefrontal cortex (PFC), the nucleus accumbens (NAc), the mesencephalon and the amygdala. We found that voluntary alcohol intake followed by 3 weeks of forced abstinence produces changes in the transcription of several genes encoding proteins directly involved in cholesterol synthesis such as 3-hydroxyl-3-methylglutaryl-coenzyme A (HMGCoA) reductase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and farnesyl diphosphate synthase (FDPS) and in its regulation such as sterol regulatory element-binding factor-2 (SREBF2), in cholesterol transport such as ATP-binding cassette subfamily A member 1 (ABCA1) and in cholesterol degradation such as CYP46A1. Interestingly, these changes appeared to be region-specific and suggest that previous chronic exposure to alcohol might durably increase cholesterol metabolism in the PFC, the NAc and the mesencephalon and decrease cholesterol metabolism in the amygdala. Altogether, these results suggest that alcohol consumption leads to durable deregulations in cholesterol metabolism in key areas involved in loss of control over drug use and addiction. These long-term neuroadaptations may participate in the changes in brain structure and functioning that are responsible for the long-lasting risks of relapse to alcohol
    corecore