60 research outputs found

    Modelling damping sources in monopile-supported offshore wind turbines

    Get PDF
    Vibration damping in offshore wind turbines is a key parameter to predict reliably the dynamic response and fatigue life of these systems. Damping in an offshore wind turbine originates from different sources, mainly, aerodynamic, structural, hydrodynamic, and soil dampings. The difficulties in identifying the individual contribution from each damping source have led to considerable uncertainty and variation in the values recommended. This paper proposes simplified but direct modelling approaches to quantify the damping contributions from the aerodynamic, hydrodynamic, and soil interactions. Results from these models were systemically compared to published values and when appropriate with simulation results from the software package FAST. The range of values obtained for aerodynamic damping confirmed those available in the literature, and blade element modelling theory was shown to provide good results relatively efficiently. The influence of couplings between fore‐aft and side‐side directions on the aerodynamic damping contribution was highlighted. The modelling of hydrodynamic damping showed that this damping is much smaller than usually recommended and could be safely ignored for offshore wind turbines. Soil damping strongly depends on the soil specific nonlinear behaviour

    Modelling wind turbine tower-rotor interaction through an aerodynamic damping matrix

    Get PDF
    Current wind turbine modelling packages mainly adopt a complex methodology in which aerodynamic forces are coupled with the motion of the wind turbine components at every time step. This can result in long simulation run times, detrimental for the large number of simulations required for fatigue or reliability analyses. This contribution presents an efficient wind turbine modelling methodology based on blade element momentum theory and a linearization of the aerodynamic forces. This allows the wind-rotor interaction to be reduced to static forces applied at the tower top, with additional terms proportional to the tower velocities expressed as an aerodynamic damping matrix. This aerodynamic model was implemented as part of a finite element model of the tower and was successfully verified against the fully-coupled modelling package FAST. The damping matrix components explain key features of the coupling between fore-aft and side-side vibrations of the wind turbine. This coupling causes energy transfers between the two directions, complicating aerodynamic damping identification. The aerodynamic damping matrix offers novel insights and an efficient method to describe the aerodynamic damping of wind turbines

    Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling

    Get PDF
    The fatigue life prediction for offshore wind turbine support structures is computationally demanding, requiring the consideration of a large number of combinations of environmental conditions and load cases. In this study, a computationally efficient methodology combining aerodynamic decoupling and modal reduction techniques is developed for fatigue life prediction. Aerodynamic decoupling is implemented to separate the support structure and rotor-nacelle assembly. The rotor dynamics were modelled using an aerodynamic damping matrix that accurately captures the aerodynamic damping coupling between the fore-aft and side-side motions. Soil-structure interaction is modelled using p-y curves, and wave loading calculated based on linear irregular waves and Morison's equation at a European (North Sea) site. A modal reduction technique is applied to significantly reduce the required number of degrees of freedom, allowing the efficient and accurate calculation of hotspot stresses and fatigue damage accumulation. The modal model was verified against a fully coupled model for a case-study, monopile supported offshore wind turbine in terms of response prediction and fatigue life evaluation. The modal model accurately predicts fatigue life (within 2%) for a range of parameters at a fraction of computational cost (0.5%) compared to the fully coupled model

    Shape control and whole-life energy assessment of an 'infinitely stiff' prototype adaptive structure

    Get PDF
    A previously developed design methodology produces optimum adaptive structures that minimise the whole-life energy which is made of an embodied part in the material and an operational part for structural adaptation. Planar and complex spatial reticular structures designed with this method and simulations showed that the adaptive solution achieves savings as high as 70% in the whole-life energy compared to optimised passive solutions. This paper describes a large-scale prototype adaptive structure built to validate the numerical findings and investigate the practicality of the design method. Experimental results show that (1) shape control can be used to achieve 'infinite stiffness' (i.e. to reduce displacements completely) in real-time without predetermined knowledge regarding position, direction and magnitude (within limits) of the external load; (2) the whole-life energy of the structure is in good agreement with that predicted by numerical simulations. This result confirms the proposed design method is reliable and that adaptive structures can achieve substantive total energy savings compared to passive structures

    Infinite stiffness structures via active control

    Get PDF
    Active control has been used in civil engineering structures for a variety of purposes. Although the potential for using deflection-control adaptation to save material has been investigated by a few other authors, little attention has been given to assessing whether these material savings outweigh the energy consumed through control and actuation. Our paper seeks to address this gap, presenting experimental work on a truss with effective infinite stiffness which builds on earlier theoretical studies. Senatore previously developed a design method that produces an optimum adaptive structure that minimises the total energy spent throughout the whole life of the structure (embodied in the materials + operational for the control) (Senatore, et al., 2013). The method was used to design a range of structures from trusses to space frames, both determinate and indeterminate, and it was shown that it allows energy saving up to 70% compared to state of the art optimisation methods. A large scale prototype structure has now been built to validate the numerical findings and investigate the practicality of the method. This paper discusses recent experimental findings and the making of the prototype. Using the insight acquired after the making and testing of the prototype the authors will discuss potential applications of adaptive structures in selection of different scenarios, ranging from cantilever seating tiers in sports stands to lightweight roofs to slender beams with 80:1 span/depth ratio

    Identification of aerodynamic damping matrix for operating wind turbines

    Get PDF
    © 2020 Elsevier Ltd Accurate knowledge of wind turbine tower vibration damping is essential for the estimation of fatigue life. However, the responses in the fore-aft and side-side directions are coupled through the wind-rotor interaction under operational conditions. This causes energy transfers and complicates aerodynamic damping identification using conventional damping ratios. Employing a reduced two-degree of freedom wind turbine model developed in this paper, this coupling can be accurately expressed by an unconventional aerodynamic damping matrix. Simulated time series obtained from this model were successfully verified against the outputs from the wind turbine simulation tool FAST. Based on the reduced system obtained, a matrix-based identification method is proposed to identify the aerodynamic damping for numerically simulated wind turbine tower responses. Applying harmonic excitations to the tower allowed the frequency response functions of the wind turbine system to be obtained and the aerodynamic damping matrix to be extracted. Results from this identification were compared to traditional operational modal analysis methods including standard and modified stochastic subspace identification. The damping in the fore-aft direction was successfully identified by all methods, but results showed that the identified damping matrix performs better in capturing the aerodynamic damping and coupling for the side-side responses

    Designing adaptive structures for whole life energy savings

    Get PDF
    Designing structures with minimal environmental impact is emerging as a seriou concern in the construction sector. Conventional structural design practice involves designing first for strength, followed by secondary checks on deflections and other serviceability limits states. If these limits are exceeded, the con-ventional solution has been to add material to increase stiffness. When the design is governed by unpredicta-ble events such as fluctuating loads, strong wind storms or earthquakes, the structure is effectively overde-signed for most of its working life. This paper presents a methodology to design adaptive structures that minimize the whole life energy consumption. The methodology is illustrated on plane pin-jointed trusses, both determinate and indeterminate. Strategically placing actuators allow the internal flow of forces to be ho-mogenized and displacements to be controlled. The actuators only start working when the loads reach a cer-tain threshold. Below this threshold, the structure resists loads mainly passively thereby limiting significantly the operational energy used. It was found that both indeterminate and determinate topologies bring substantial energy savings up to 70% of the total energy

    Novel Aerodynamic Damping Identification Method for Operating Wind Turbines

    Get PDF
    This contribution introduces a novel method to determine the aerodynamic damping for operating wind turbines. Previous research typically estimated the modal damping ratios in the fore-aft and side-side directions as two decoupled degrees of freedom. This can result in misleading results, as the two directions are closely and unconventionally coupled through the wind-rotor interaction. This study proposes the identification of a novel type of aerodynamic damping matrix. This matrix arises from the linearization of the aerodynamic force resultant obtained from blade element momentum theory (blade modes not included). This linearized force is then applied to a beam finite element model of the tower with a lumped mass representing the rotor-nacelle assembly. This decoupled strategy efficiently describes the physics of the system including the coupling between the fore-aft and side-side motions. The identification of the damping matrix is shown to work for simulated wind time data

    Auditory spatial deficits following hemispheric lesions: Dissociation of explicit and implicit processing.

    Get PDF
    Auditory spatial deficits occur frequently after hemispheric damage; a previous case report suggested that the explicit awareness of sound positions, as in sound localisation, can be impaired while the implicit use of auditory cues for the segregation of sound objects in noisy environments remains preserved. By assessing systematically patients with a first hemispheric lesion, we have shown that (1) explicit and/or implicit use can be disturbed; (2) impaired explicit vs. preserved implicit use dissociations occur rather frequently; and (3) different types of sound localisation deficits can be associated with preserved implicit use. Conceptually, the dissociation between the explicit and implicit use may reflect the dual-stream dichotomy of auditory processing. Our results speak in favour of systematic assessments of auditory spatial functions in clinical settings, especially when adaptation to auditory environment is at stake. Further, systematic studies are needed to link deficits of explicit vs. implicit use to disability in everyday activities, to design appropriate rehabilitation strategies, and to ascertain how far the explicit and implicit use of spatial cues can be retrained following brain damage

    Land Use and Topography Influence in a Complex Terrain Area: A High Resolution Mesoscale Modelling Study over the Eastern Pyrenees using the WRF Model

    Get PDF
    Different types of land use (LU) have different physical properties which can change local energy balance and hence vertical fluxes of moisture, heat and momentum. This in turn leads to changes in near-surface temperature and moisture fields. Simulating atmospheric flow over complex terrain requires accurate local-scale energy balance and therefore model grid spacing must be sufficient to represent both topography and land-use. In this study we use both the Corine Land Cover (CLC) and United States Geological Survey (USGS) land use databases for use with the Weather Research and Forecasting (WRF) model and evaluate the importance of both land-use classification and horizontal resolution in contributing to successful modelling of surface temperatures and humidities observed from a network of 39 sensors over a 9 day period in summer 2013. We examine case studies of the effects of thermal inertia and soil moisture availability at individual locations. The scale at which the LU classification is observed influences the success of the model in reproducing observed patterns of temperature and moisture. Statistical validation of model output demonstrates model sensitivity to both the choice of LU database used and the horizontal resolution. In general, results show that on average, by a) using CLC instead of USGS and/or b) increasing horizontal resolution, model performance is improved. We also show that the sensitivity to these changes in the model performance shows a daily cycle
    corecore