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Abstract 

 

Accurate knowledge of wind turbine tower vibration damping is essential for the esti-

mation of fatigue life. However, the responses in the fore-aft and side-side directions 

are coupled through the wind-rotor interaction under operational conditions. This 

causes energy transfers and complicates aerodynamic damping identification using 

conventional damping ratios. Employing a reduced two-degree freedom wind turbine 

model developed in this paper, this coupling can be accurately expressed by an uncon-

ventional aerodynamic damping matrix. Simulated time series obtained from this model 

were successfully verified against the outputs from the wind turbine simulation tool 

FAST. Based on the reduced system obtained, a matrix-based identification method is 

proposed to identify the aerodynamic damping for numerically simulated wind turbine 

tower responses. Applying harmonic excitations to the tower allowed the frequency 

response functions of the wind turbine system to be obtained and the aerodynamic 

damping matrix to be extracted. Results from this identification were compared to tra-

ditional operational modal analysis methods including standard and modified stochastic 

subspace identification. The damping ratios in the fore-aft direction were successfully 

identified by all methods, but results showed that the identified damping matrix per-

forms better in capturing the aerodynamic damping and coupling for the side-side re-

sponses.  

 

Key words: damping identification, wind turbine, frequency response function, aerody-

namic damping, fatigue 
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1 Introduction 

As wind turbines become larger to harvest more wind energy, they become more flex-

ible and susceptible to vibration. Due to vibration during their operational life, the 

tower, blades and other components are prone to fatigue damage, which needs to be 

carefully considered at the design stage or for the determination of remaining life 

([1][2]). Damping is a key parameter in wind turbine systems as it limits the vibration 

amplitude. Therefore, identifying damping reliably in these systems is an important is-

sue. Different damping sources, including structural, aerodynamic, soil, and hydrody-

namic (for offshore wind turbines) damping, and damping devices (if installed), con-

tribute to the total damping in wind turbines [3]. For wind turbines in operation, the 

fore-aft aerodynamic damping has the highest contribution, so the measured total damp-

ing could also be seen as a close substitute for the aerodynamic damping. In many pub-

lished studies the distinction between total damping and aerodynamic damping for op-

erating wind turbines is not always clear [4]. In practice only the total damping can be 

measured directly. 

The identification of the aerodynamic damping is challenging because of the complex 

fluid-structure interaction and the nature of turbulent wind. Classical experimental 

modal analysis requires a controlled excitation to trigger a dynamic response [5]. Op-

erational Modal Analysis (OMA), which does not require controlled force excitation of 

large wind turbine structures, is usually preferred to measure aerodynamic damping in 

operation. However, methods with artificial excitations (such as boat impact [6] and 

hydraulic shaker [7]) have also been used. In the literature, a limited number of studies 

focussed specifically on identifying this damping contribution ([4], [6-14]). Measuring 

damping in parked wind turbines has proved easier than in operating conditions [8]. 

Studies by researchers such as Devriendt et al. [9] and Bajrić et al. [10] have success-

fully identified damping for parked turbines using different identification methods ei-

ther in the time or frequency domain. The identification methods used for operating 

turbines are similar to those for parked turbines. Hansen et al. [4] used Stochastic Sub-

space Identification (SSI) to extract the damping ratios for an operating wind turbine 

but the resulting damping ratios were scattered and the contribution due to aerodynamic 

damping alone remains unclear. Ozbek and Rixen [11] used the Least Square Complex 

Exponential (LSCE) method to identify aerodynamic damping with data from strain 

gauge and photogrammetry measurements. The measured damping ratio values did not 
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vary significantly and were close to simulation results obtained using HAWCStab [12]. 

Devriendt et al. [13] used the poly Least-Squares Complex Frequency-domain (p-

LSCF) estimator to identify the total damping for an operational wind turbine. They 

emphasised that harmonics in the excitation would hinder the use of classical OMA 

methods which assumes that measured resonances are only caused by amplification of 

the broadband noise excitation at the natural frequencies of the system. Hu et al. [14] 

implemented the p-LSCF method to identify the total damping in an operating turbine 

with different rotation speeds. The resonance due to 3P loading was observed to have a 

significant effect on the identified total damping. Koukoura et al. [6] studied the total 

damping in an operating offshore wind turbine under ambient excitation using the En-

hanced Frequency Domain Decomposition (EFDD) method. They found that a beating 

phenomenon observed on the autocorrelation function of the response made the identi-

fication less reliable, especially for side-side vibrations.  

Although much research has been conducted to identify the aerodynamic damping in 

operating wind turbines using traditional OMA methods, limitations in these methods 

still exist. For operating wind turbines, the validity of some basic assumptions under-

pinning the implementation of most OMA methods remain doubtful and this causes 

difficulties in applying OMA techniques to wind turbines. These difficulties have been 

described by Tcherniak et al. [15] and Ozbek et al. [8]. First, the excitations to the 

structure need to be uncorrelated, but the forces exciting a wind turbine are not uncor-

related as they are coupled due to the influence of the rotor rotation. Second, traditional 

OMA methods assume that the resultant responses due to ambient excitation only in-

clude harmonics caused by the natural modes of the structure but not harmonics due to 

ambient excitations themselves. This assumption is violated by the rotor rotation caus-

ing 1P, 3P etc. loadings to the tower. Third, traditional OMA techniques require that 

the structure system itself is a time-invariant system, which is not the case for wind 

turbines as aerodynamic damping is influenced by the inflow wind speed, the rotation 

speed and the pitch angles. None of these parameters are constant for wind turbines in 

normal operation due to the stochastic nature of wind turbulence and the variability of 

controlled conditions [16]. Fourth, and maybe less important, the excitations caused by 

turbulent wind field are not white noise. The effort to extract dynamic parameters for 

wind turbines resulted in the development of modified OMA methods suitable for large 

wind turbine structures under ambient excitations. The Natural Excitation Technique 

(NExT) OMA method developed by James et al. [17] was initially used for modal 
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parameter extraction of operating vertical-axis wind turbines. Some researchers im-

proved the traditional OMA methods so that these methods are able to identify the wind 

turbine system when the excitations contain harmonics. Dai et al. [18] developed a 

modified SSI which is able to identify modal parameters of structures when the excita-

tions contain harmonic components. They applied this method to a wind turbine tower 

and successfully obtained the damping ratios by distinguishing the natural modes and 

the harmonically excited modes. Dong et al. [19] applied a similar modified SSI method 

to identify the frequency and damping of an operating turbine, and obtained a wide 

range of values in different operating conditions. 

Besides the difficulties mentioned above, all previously discussed studies assumed that 

the wind turbine system is decoupled in terms of the Fore-Aft (FA) and Side-Side (SS) 

motions. Recent research [20] showed that the rotating blades introduce significant 

damping coupling between the FA and SS directions for an operating wind turbine and 

this coupling is non-classical, i.e., the coupling is through a damping matrix which, 

unusually, is not symmetric. From this different way of looking at the aerodynamic 

damping, a new operational identification method can be developed that extracts the 

aerodynamic damping matrix directly. This article describes this approach applied to 

three-blade horizontal-axis wind turbines and is organised as follows. Section 2 de-

scribes the wind turbine model with the full aerodynamic damping matrix and the der-

ivation that converts the original model with full aerodynamic damping matrix to a 

Two-Degree of Freedom (2-DOF) model. In Section 3, model verification against the 

wind turbine modelling package FAST [21] developed by NREL is presented and prob-

lems associated with traditional damping identification aimed at obtaining damping ra-

tios are stated. Section 4 shows how the identification method based on the aerody-

namic damping matrix performs for identification examples. Section 5 concludes the 

paper. 

2 Model description 

2.1 Wind turbine model description 

A three-bladed onshore wind turbine was modelled using bespoke Finite Element (FE) 

code written in MATLAB. The model is a cantilever beam made of 11 Euler-Bernoulli 

beam elements that represent the tower and a lumped mass at the top representing the 
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Rotor-Nacelle Assembly (RNA). Each node is associated with a translational and rota-

tional degree of freedom in two perpendicular horizontal directions, 𝑥 (FA) and 𝑦 

(SS) as shown in Figure 1. The model has 44 degrees of freedom in total. The geometric 

and material properties of the system are based on a modified NREL 5MW reference 

onshore wind turbine [22], with properties listed in Table 1. The modification consists 

in placing the centre of mass of the RNA at the tower top and setting the moments of 

inertia of the RNA relative to the tower top to zero. This was necessary as it is not clear 

how to specify different RNA moments of inertia in different directions in FAST. 

 

Figure 1. Schematic of the wind turbine. 

Table 1. Properties of the modified NREL 5MW reference onshore wind turbine. 

Rotor Diameter, 𝑅 126 m 

Hub Height from MSL 87.6 m 

Tower Diameter, 𝐷 3.87-6.00 m 

Tower Thickness, 𝑡 19-27 mm 

Lumped Mass at Top 3.5×105 kg 

Rated Wind Speed 12.1 m/s 

Natural Frequency 0.34 Hz 

 

Using the information provided for the reference turbine, the mass and stiffness matri-

ces of the turbine system were assembled.  
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The equation of motion of the system is: 

where 𝐌, 𝐂𝑆𝑡𝑟𝑢𝑐 and 𝐊 are the mass, structural damping and stiffness matrices re-

spectively. 𝐂𝑆𝑡𝑟𝑢𝑐 is assumed to be a proportional damping matrix.  

𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) = [F𝑥

𝐹𝑙𝑒𝑥(𝑡) F𝑦
𝐹𝑙𝑒𝑥(𝑡) M𝑥

𝐹𝑙𝑒𝑥(𝑡) M𝑦
𝐹𝑙𝑒𝑥(𝑡)]

T
. 

Given the relative wind speeds acting on the blade elements, the resultant aerodynamic 

force 𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) can be calculated using Blade Element Momentum (BEM) Theory [23]. 

As described in [20], 𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) can be linearized with respect to the tower top veloci-

ties. This gives a first term 𝐅𝑅𝑖𝑔𝑖𝑑
𝑇𝑜𝑝 (𝑡) independent of the velocities which represents 

the aerodynamic force applied to a rigid tower, plus a second term linear in velocities 

which can be expressed using an aerodynamic damping matrix 𝐂𝐴𝑒𝑟𝑜: 

𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) = 𝐅𝑅𝑖𝑔𝑖𝑑

𝑇𝑜𝑝 (𝑡) − 𝐂𝐴𝑒𝑟𝑜𝐮̇
𝑇𝑜𝑝(𝑡). 

The derivation of aerodynamic damping matrix in [20] requires the initial assumption 

that the inflow wind field is constant. As shown in Appendix A, an extension to this 

derivation can be made to consider a turbulent and non-uniform wind field, which leads 

to an aerodynamic damping matrix 𝐂𝐴𝑒𝑟𝑜 in the following form: 

where the matrix components 𝑐𝑖𝑗 are defined analytically in Appendix A in terms of 

derivatives of the blade element forces. 

The linearized equation of motion for the FE model considering aerodynamic coupling 

is 

where 𝐂  is 𝐂𝑆𝑡𝑟𝑢𝑐  plus the terms of 𝐂𝐴𝑒𝑟𝑜  added at the relevant locations and 

𝐅𝑅𝑖𝑔𝑖𝑑(𝑡) is the tower top force 𝐅𝑅𝑖𝑔𝑖𝑑
𝑇𝑜𝑝 (𝑡) padded with zeros for all other degree of 

freedoms. 

2.2 Reduction to a 2-DOF system 

The response of the system expressed in Equation (1) can be calculated using the con-

cept of modal decomposition, when 𝐂𝑆𝑡𝑟𝑢𝑐 is assumed to be a proportional damping 

 𝐌𝐮̈(𝑡) + 𝐂𝑆𝑡𝑟𝑢𝑐𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐅𝐹𝑙𝑒𝑥(𝑡), (1) 

 

𝐂𝐴𝑒𝑟𝑜 =

[
 
 
 
𝑐𝑥𝑥 𝑐𝑥𝑦 𝑐𝑥𝜃𝑥 𝑐𝑥𝜃𝑦
𝑐𝑦𝑥 𝑐𝑦𝑦 𝑐𝑦𝜃𝑥 𝑐𝑦𝜃𝑦
𝑐𝜃𝑥𝑥 𝑐𝜃𝑥𝑦 𝑐𝜃𝑥𝜃𝑥 𝑐𝜃𝑥𝜃𝑦
𝑐𝜃𝑦𝑥 𝑐𝜃𝑦𝑦 𝑐𝜃𝑦𝜃𝑥 𝑐𝜃𝑦𝜃𝑦]

 
 
 
, (2) 

 𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐅𝑅𝑖𝑔𝑖𝑑(𝑡), (3) 
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matrix and 𝐅𝐹𝑙𝑒𝑥(𝑡) is initially regarded as an external force independent of the dy-

namic properties of the system. In wind turbines, the FA and SS responses are domi-

nated by the FA and SS first bending modes so only two related generalised coordinates 

will be considered [24] in the following derivation. Expressing the response as modal 

superpositions and pre-multiplying Eq. (3) by the transpose of each mode shape in turn, 

the equations of motion for the first FA and SS bending modes can be written as: 

where 𝑚̅𝑥 , 𝑚̅𝑦 , 𝑘̅𝑥  and 𝑘̅𝑦  are the modal mass and stiffness for the first FA/SS  

mode respectively, 𝜁𝑥̅  and 𝜁𝑦̅  are the structural modal damping ratios, and 𝛼𝑥(𝑡) 

and 𝛼𝑦(𝑡) are the generalised coordinates for the FA and SS directions respectively. 

It should be noted that the employed modal properties are for the “undamped modes” 

as these properties are calculated from the mass and stiffness matrices in Equation (3), 

excluding the damping matrix. The actual modes of the entire system including the non-

symmetric damping matrix are complex [25], but we employ the undamped modes as 

a mathematical tool to format the problem for later identification. Structural damping 

terms were considered in Equation (4) and the following derivations to demonstrate 

how the developed 2-DOF model includes these terms for a complete wind turbine 

model. For the results showing the identification of aerodynamic damping, zero struc-

tural damping is later assumed throughout. The modal forces applied in the FA and SS 

directions after modal decomposition are 𝐅𝑥
𝐹𝑙𝑒𝑥(𝑡) = [F𝑥

𝐹𝑙𝑒𝑥(𝑡) M𝑦
𝐹𝑙𝑒𝑥(𝑡)]

T
 and 

𝐅𝑦
𝐹𝑙𝑒𝑥(𝑡) = [F𝑦

𝐹𝑙𝑒𝑥(𝑡) M𝑥
𝐹𝑙𝑒𝑥(𝑡)]

T
 multiplied by the truncated mode shapes. The trun-

cated mode shapes for the first FA and SS bending modes of the system in Equation (4) 

are 𝛟𝑥 = [𝜙𝑥1 𝜙𝑥2]
T  and 𝛟𝑦 = [𝜙𝑦1 𝜙𝑦2]

T
, where 𝜙𝑥1  and 𝜙𝑦1  correspond to 

the displacement motion while 𝜙𝑥2 and 𝜙𝑦2 correspond to the angular motion for the 

first FA and SS bending modes respectively. The displacement and angular motions at 

the tower top can be expressed by multiplying the mode shapes and generalised coor-

dinates, i.e., 𝑢̇𝑥 ≈ 𝜙𝑥1𝛼̇𝑥(𝑡), 𝑢̇𝑦 ≈ 𝜙𝑦1𝛼̇𝑦(𝑡), 𝜃̇𝑥 ≈ 𝜙𝑦2𝛼̇𝑥(𝑡) and 𝜃̇𝑦 ≈ 𝜙𝑥2𝛼̇𝑥(𝑡) 

for the velocities. Since 𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) = 𝐅𝑅𝑖𝑔𝑖𝑑

𝑇𝑜𝑝 (𝑡) − 𝐂𝐴𝑒𝑟𝑜𝐮̇
𝑇𝑜𝑝(𝑡), the modal force in the 

FA direction, 𝛟𝑥
T𝐅𝑥

𝐹𝑙𝑒𝑥(𝑡), can be written as 

 
𝑚̅𝑥𝛼̈𝑥(𝑡) + 2𝜁𝑥̅√𝑚̅𝑥𝑘̅𝑥𝛼̇𝑥(𝑡) + 𝑘̅𝑥𝛼𝑥(𝑡) = 𝛟𝑥

T𝐅𝑥
𝐹𝑙𝑒𝑥(𝑡) 

𝑚̅𝑦𝛼̈𝑦(𝑡) + 2𝜁𝑦̅√𝑚̅𝑦𝑘̅𝑦𝛼̇𝑦(𝑡) + 𝑘̅𝑦𝛼𝑦(𝑡) = 𝛟𝑦
T𝐅𝑦

𝐹𝑙𝑒𝑥(𝑡) 

(4) 
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𝛟𝑥
T𝐅𝑥

𝐹𝑙𝑒𝑥(𝑡) = [𝜙𝑥1 𝜙𝑥2]

{
 
 

 
 

[
𝐹𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡)

M𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡)

]

− [
𝑐𝑥𝑥 𝑐𝑥𝑦 𝑐𝑥𝜃𝑥 𝑐𝑥𝜃𝑦
𝑐𝜃𝑦𝑥 𝑐𝜃𝑦𝑦 𝑐𝜃𝑦𝜃𝑥 𝑐𝜃𝑦𝜃𝑦

]

[
 
 
 
 
𝜙𝑥1𝛼̇𝑥(𝑡)

𝜙𝑦1𝛼̇𝑦(𝑡)

𝜙𝑦2𝛼̇𝑦(𝑡)

𝜙𝑥2𝛼̇𝑥(𝑡)]
 
 
 
 

}
 
 

 
 

. 

The above equation can be simplified to 

Similarly, the corresponding SS modal force is 

Therefore, the equations of motion for the first bending modes in FA and SS directions 

can be written in matrix form: 

where 

𝑐𝑥̅𝑥 = 𝜙𝑥1
2 𝑐𝑥𝑥 + 𝜙𝑥1𝜙𝑥2𝑐𝑥𝜃𝑦 + 𝜙𝑥2𝜙𝑥1𝑐𝜃𝑦𝑥 + 𝜙𝑥2

2 𝑐𝜃𝑦𝜃𝑦 , 

𝑐𝑥̅𝑦 = 𝜙𝑥1𝜙𝑦1𝑐𝑥𝑦 + 𝜙𝑥1𝜙𝑦2𝑐𝑥𝜃𝑥 + 𝜙𝑥2𝜙𝑦1𝑐𝜃𝑦𝑦 + 𝜙𝑥2𝜙𝑦2𝑐𝜃𝑦𝜃𝑥 , 

𝑐𝑦̅𝑥 = 𝜙𝑦1𝜙𝑥1𝑐𝑦𝑥 + 𝜙𝑦1𝜙𝑥2𝑐𝑦𝜃𝑦 + 𝜙𝑦2𝜙𝑥1𝑐𝜃𝑥𝑥 + 𝜙𝑦2𝜙𝑥2𝑐𝜃𝑥𝜃𝑦 , 

𝑐𝑦̅𝑦 = 𝜙𝑦1
2 𝑐𝑦𝑦 + 𝜙𝑦1𝜙𝑦2𝑐𝑦𝜃𝑥 + 𝜙𝑦2𝜙𝑦1𝑐𝜃𝑥𝑦 + 𝜙𝑦2

2 𝑐𝜃𝑥𝜃𝑥 , 

𝑠̅𝑥 = 2𝜁𝑥̅√𝑚̅𝑥𝑘̅𝑥, 

𝑠̅𝑦 = 2𝜁𝑦̅√𝑚̅𝑦𝑘̅𝑦. 

 

 

𝛟𝑥
T𝐅𝑥

𝐹𝑙𝑒𝑥(𝑡) = 𝜙𝑥1𝐹𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑥2𝑀𝑦

𝑅𝑖𝑔𝑖𝑑(𝑡) 

−(𝜙𝑥1
2 𝑐𝑥𝑥 + 𝜙𝑥1𝜙𝑥2𝑐𝑥𝜃𝑦 + 𝜙𝑥2𝜙𝑥1𝑐𝜃𝑦𝑥 + 𝜙𝑥2

2 𝑐𝜃𝑦𝜃𝑦) 𝛼̇𝑥(𝑡) 

−(𝜙𝑥1𝜙𝑦1𝑐𝑥𝑦 + 𝜙𝑥1𝜙𝑦2𝑐𝑥𝜃𝑥 + 𝜙𝑥2𝜙𝑦1𝑐𝜃𝑦𝑦 +𝜙𝑥2𝜙𝑦2𝑐𝜃𝑦𝜃𝑥) 𝛼̇𝑦(𝑡). 

(5) 

𝛟𝑦
T𝐅𝑦

𝐹𝑙𝑒𝑥(𝑡) = 𝜙𝑦1𝐹𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑦2𝑀𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡) 

−(𝜙𝑦1𝜙𝑥1𝑐𝑦𝑥 + 𝜙𝑦1𝜙𝑥2𝑐𝑦𝜃𝑦 + 𝜙𝑦2𝜙𝑥1𝑐𝜃𝑥𝑥 + 𝜙𝑦2𝜙𝑥2𝑐𝜃𝑥𝜃𝑦) 𝛼̇𝑥(𝑡) 

−(𝜙𝑦1
2 𝑐𝑦𝑦 + 𝜙𝑦1𝜙𝑦2𝑐𝑦𝜃𝑥 + 𝜙𝑦2𝜙𝑦1𝑐𝜃𝑥𝑦 + 𝜙𝑦2

2 𝑐𝜃𝑥𝜃𝑥)𝛼̇𝑦(𝑡). 

(6) 

[
𝑚̅𝑥 0
0 𝑚̅𝑦

] [
𝛼̈𝑥(𝑡)

𝛼̈𝑦(𝑡)
] + [

𝑐𝑥̅𝑥 + 𝑠̅𝑥 𝑐𝑥̅𝑦
𝑐𝑦̅𝑥 𝑐𝑦̅𝑦 + 𝑠̅𝑦

] [
𝛼̇𝑥(𝑡)

𝛼̇𝑦(𝑡)
] 

+[
𝑘̅𝑥 0

0 𝑘̅𝑦
] [
𝛼𝑥(𝑡)

𝛼𝑦(𝑡)
] = [

𝜙𝑥1𝐹𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑥2𝑀𝑦

𝑅𝑖𝑔𝑖𝑑(𝑡)

𝜙𝑦1𝐹𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑦2𝑀𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡)
], 

(7) 
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Here the modal damping matrix 𝐂 is defined as 

The presence of cross terms in the modal damping matrix indicates that the FA and SS 

vibrations are coupled through damping. This coupling originates from the fact that the 

inclusion of the aerodynamic damping terms in 𝐂𝐴𝑒𝑟𝑜 makes the system damping ma-

trix 𝑪 non-proportional and therefore it is not diagonalized by the undamped modal 

shapes. Unlike traditional damping matrices, 𝑐𝑥̅𝑦 and 𝑐𝑦̅𝑥 are not identical, making 

the modal damping matrix asymmetric. This is not uncommon when considering damp-

ing in rotating machineries [26]. The 2-DOF model described by Equation (7) is an 

approximate model of the original one described by Equation (3) with only the first 

bending modes considered. Higher modes could be included in the model by using the 

relevant mode shapes and generalised coordinates in a similar way. The response of the 

turbine can be calculated by summing up the contributions from the modes considered. 

When the inflow wind field is uniform in space and constant in time, the aerodynamic 

damping matrix described by Equation (8) is constant during the simulation. However, 

when a turbulent inflow wind field is considered, the aerodynamic damping matrix be-

comes time-varying. 

3 Model verification and identification  

3.1 Comparison between 2-DOF model and FAST 

For given operating conditions, the 2×2 modal aerodynamic damping matrix 𝐂 was 

calculated using Equation (8) with the airfoil properties provided with the FAST model. 

The stiffness and mass matrices for the 2-DOF model were computed from the material 

and geometric properties provided with the FAST model to make the models compara-

ble. The 2-DOF model was verified against the FAST model by comparing the FA and 

SS responses at the tower top. To quantify the degree of correlation between the two 

responses, the Time Response Assurance Criterion (TRAC) [27] was used. Considering 

two time response column vectors 𝐮1(𝑡) and 𝐮2(𝑡) generated using different mod-

els, the TRAC is defined as 

where 𝐮1(𝑡) and 𝐮2(𝑡) have the same duration and time step. Choosing the mean 

wind speed as 20 m/s, the rotor rotation speed is set to 12.1 rpm and blade pitch angle 

 
𝐂 = [

𝑐𝑥̅𝑥 + 𝑠̅𝑥 𝑐𝑥̅𝑦
𝑐𝑦̅𝑥 𝑐𝑦̅𝑦 + 𝑠̅𝑦

]. (8) 

 
𝑇𝑅𝐴𝐶 =

[𝐮1(𝑡)
T𝐮2(𝑡)]

2 

[𝐮1(𝑡)𝑇𝐮1(𝑡)][𝐮2(𝑡)𝑇𝐮2(𝑡)]
    , (9) 
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to 17 degrees, giving the rated power output. The wind field was divided into a 11×11 

rectangular grid with 20 m distance between two adjacent grid points. The centre of the 

grid is at 90 m height, close to the tower top at 87.6 m. To better control the input wind 

field in both the 2-DOF model and the FAST model, the non-uniform and time-varying 

wind field was generated by a customised turbulent wind field generator in MATLAB, 

producing similar wind time series compared to the FAST wind field generator – 

TurbSim [28]. Kaimal spectrum and relevant parameters (e.g. coherence length param-

eters) were selected as recommended by IEC 61400 - Edition 3 [29]. The turbulence 

intensity was selected as 10%. In the FAST model, the following default settings were 

changed to allow a consistent comparison with our model. The non-uniform inflow 

wind field was used as the input; the tower was allowed to vibrate in the FA and SS 

directions, but the wind-tower interaction was not included (no shadow from the 

blades); the blades were set as rigid. For the 2-DOF model, the external modal forces 

were derived from the aerodynamic forces applied to the rigid tower considering the 

same inflow field as the FAST model. The coefficients in the time-varying aerodynamic 

damping matrix were calculated at every time step during the time integration.  

The HHT-𝛼 method [30] was implemented with and without an extra Newton-Raphson 

step when the damping matrix is updated at every time step and the results were prac-

tically indistinguishable. From comparison results not shown here, the responses from 

the 2-DOF model with the time-varying damping matrix were very close to those from 

the FAST model with TRAC values of 1.000 for both the FA and SS response in this 

case. These values represent a baseline for good agreement against which others can be 

compared. Then the time-varying aerodynamic damping matrix was changed to a con-

stant aerodynamic damping matrix by assuming the wind speed in the rotor plane equals 

the mean wind speed. Figure 2 compares the responses from the 2-DOF model with the 

constant aerodynamic damping matrix and those from the FAST model for a wind speed 

of 20 m/s, indicating that the FA and SS responses from these two models are close, 

with TRAC values of 1.000 for the FA response and 0.995 for the SS response. Figure 

2(d) shows that the SS responses have similar frequencies but slightly different ampli-

tudes. Similar comparison was conducted for wind speeds from 6 m/s to 20 m/s, show-

ing good agreement between the responses from the 2-DOF model and the FAST model 

(minimum TRAC values are 1.000 and 0.990 for the FA and SS responses respectively). 

These comparisons demonstrate that the constant aerodynamic damping matrix can ad-

equately represent the damping characteristics of the wind turbine for non-uniform and 



 

12 

 
 

time-varying wind fields. This shows that if the constant damping matrix can be iden-

tified, the dynamic behaviour of the system is captured accurately. 

  

(a) (b) 

  

(c) (d) 

Figure 2. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF model 

with the constant aerodynamic damping matrix and the FAST model; (c) and (d) are 

zooms of (a) and (b) over the initial 60s. 

3.2 Comparison between time series obtained using different damping models 

Many researchers have given analytical expressions for the FA damping [31], with Val-

amanesh and Myers [32] and [16] providing analytical expressions for both the FA and 

SS damping. Comparison was made between the responses generated by the 2-DOF 

model with the constant aerodynamic damping matrix described in section 2 and mod-

els using diagonal damping matrices made of aerodynamic damping ratios estimated 
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following the methods provided in [32] and [16] (both produce identical damping ra-

tios). For a mean wind speed of 20 m/s, the response comparison is shown in Figure 3. 

The FA and SS responses generated from the model with damping ratios are both dif-

ferent from those from the 2-DOF model, with a TRAC value of 0.984 in the FA direc-

tion and a TRAC value of 0.826 in the SS direction. From Section 3.1 we know that the 

2-DOF model generates similar responses in both FA and SS directions compared to 

those from FAST. Both the FA and SS damping are under-estimated using the methods 

from [32] and [16], as the coupling between the FA and SS motions is not considered 

in the damping calculation formulae. 

  

(a) (b) 

  

(c) (d) 

Figure 3. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF model 

with the constant aerodynamic damping matrix and the model with estimated 

damping ratios; (c) and (d) are zooms of (a) and (b) over the initial 60s. 
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3.3 Damping identification using classic and modified OMA 

Two existing OMA methods were chosen to identify the damping ratios in the FA and 

SS directions. The first OMA method is classic data-driven SSI, and the second method 

is a modified SSI method [18]. The modified SSI method introduces a harmonic vector 

into the measurements in order to isolate structural modes from the response. It was 

adopted herein to reduce the influence induced by the interaction in the two directions, 

i.e., FA and SS, through taking the first mode vibration in one direction as a harmonic 

excitation. Based on the fundamental frequency (0.34 Hz) of the wind turbine (Table 

1), the modified measurement was constructed as 

where 𝐮(𝑡) is the wind turbine response, and 𝐈 is an identity vector (all diagonal ele-

ments equal to 1 and otherwise zero) with the same size as 𝐮(𝑡). 

With the mean wind speed increasing from 6 m/s to 20 m/s (2 m/s increment), turbulent 

non-uniform wind fields were generated by the customised turbulent wind field gener-

ator. For every mean wind speed, 10 random seeds were allocated to generate 10 sets 

of wind fields. These wind fields were used as input to the FAST model and corre-

sponding wind turbine responses were obtained. The two OMA methods were used to 

separately estimate the damping ratios in the FA and SS directions. The mean values 

and the standard deviations of the damping ratio for all mean wind speeds can be ob-

tained using the 10 data sets. The mean values of the damping ratios can be converted 

into damping coefficients using the modal stiffness and mass with regard to the first 

bending modes. These mean values of the damping coefficients and their standard de-

viations are plotted in Figure 4, together with the analytical diagonal damping coeffi-

cients in the 2-DOF model. The identified FA and SS damping coefficients using mod-

ified SSI are very close to those using classic SSI. The identified FA damping 

coefficients using both OMA methods are slightly lower than the analytical diagonal 

FA damping coefficients, showing a similar trend with wind speed. However, the iden-

tified SS damping coefficients using either OMA methods are much higher than the 

actual damping coefficient in the SS direction and do not show the increase with wind 

speed.  

 𝐮𝑚(𝑡) = 𝐮(𝑡) + 𝐈 sin(0.34 ∙ 2𝜋𝑡), (10)  
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(a) (b) 

Figure 4. Comparison of the FA (a) and SS (b) identified damping coefficients using 

classic and modified SSI compared to theorectical diagonal damping matrix 

coefficients for wind speeds between 6 and 20 m/s. 

 

For a wind speed of 20 m/s, the FA and SS responses generated from the model with 

the identified damping ratios using modified SSI are compared with the responses from 

FAST in Figure 5 with the same input forces. The TRAC values for the FA and SS 

responses are 1.000 and 0.941. In the FA direction, the model with the identified damp-

ing coefficients produces similar responses compared to FAST. However, the responses 

in the SS direction generated by the 2-DOF model with identified damping ratios are 

quite different from those obtained from FAST. Setting the off-diagonal terms in the 

damping matrix in Equation (7) to zero, the dynamic system is effectively decoupled in 

the FA and SS directions. The agreement in the FA responses indicates that the off-

diagonal terms do not significantly influence the FA motion and damping. The differ-

ence in the SS direction means that the identified damping ratios are not sufficient to 

describe the SS damping and that the off-diagonal terms have significant influence on 

the SS motion. 
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(a) (b) 

  

(c) (d) 

Figure 5. Comparison of the FA (a, c) and SS (b, d) responses from the FAST model 

and the model with identified damping ratios using modified SSI for 20 m/s wind 

speed; (c) and (d) are zooms of (a) and (b) over the initial 60s. 

 

Overall, the results from this section show that the 2-DOF model generates similar re-

sponses for the same input as the FAST model, confirming that the modal damping 

matrix in the 2-DOF model describes the aerodynamic damping in the wind turbine 

system adequately. On the other hand, the models with traditional aerodynamic damp-

ing ratios obtained analytically or using OMA cannot describe the SS vibration of the 

turbine system well enough, requiring identification of the aerodynamic damping ma-

trix.  
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4 Damping identification  

4.1 Methodology 

In this section the objective is to identify the unconventional damping in the system 

from simulated time series data for the FA and SS directions. One possibility for doing 

this would be to identify the complex modes directly ([33][34]). However, here we 

opted to directly identify the reduced aerodynamic damping matrix 𝐂 defined in Equa-

tion (8) as the compounded effect of closely spaced first bending modes and the non-

proportional aerodynamic damping would be mode complexity [33]. Identifying the 

2×2 damping matrix targets the aerodynamic component directly. The general damping 

identification matrix method proposed by Chen et al. [35] was used. The method, out-

lined in Appendix B, estimates the damping matrix from the Frequency Response Func-

tions (FRFs) of the structure and assumes that the mass and stiffness matrices are al-

ready known (Appendix C). Although originally presented for standard system 

matrices, the assumptions underpinning this method are applicable to the problem of 

identifying the damping matrix defined here. Converting the wind turbine model to a 

2-DOF system as described in Section 2 significantly reduces the FRFs to be estimated 

to a 2×2 matrix 𝐇(𝜔) for the first bending modes. The FRF matrix for the 2-DOF sys-

tem can be written as 

where for example the term 𝐻𝑥𝑦 represents the transfer function between the output 

FA displacement 𝑥 and an input force in the 𝑦 (SS) direction (other terms follow this 

format). Once 𝐇(𝜔)  is obtained, 𝐆(𝜔)  can be calculated (𝐆(𝜔) =

−Im(𝐇(𝜔))[Re(𝐇(𝜔))]−1 see Appendix B). The modal stiffnesses and masses, and 

the mode shapes in Equation (7) can be obtained by traditional OMA methods on a 

parked turbine, from which 𝐇𝑁(𝜔) = [𝐊 − 𝜔2𝐌]−1 can be determined. Then, fol-

lowing Chen et al. [35], the damping matrix can be determined by averaging the calcu-

lated frequency-dependent damping terms. 

From this summary, the success of Chen’s identification method hinges on a satisfac-

tory estimation of the relevant transfer functions. The FRF matrix in this study is ob-

tained using responses caused by the combination of wind loading and harmonic forces 

applied at the tower top. Initially, it was attempted to calculate the input force based on 

the incoming mean wind speed and BEM calculations, but this gave poor results both 

 
𝐇(𝜔)  = [

𝐻𝑥𝑥(𝜔) 𝐻𝑥𝑦(𝜔)

𝐻𝑦𝑥(𝜔) 𝐻𝑦𝑦(𝜔)
], (11) 
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in terms of FRF and damping estimations, necessitating the use a harmonic force at the 

tower top. This may present practical challenges, but is closer to conventional experi-

mental modal analysis [5]. As the response of an operating wind turbine is caused by 

the combination of the aerodynamic loading and the harmonic excitation at a particular 

frequency, the harmonic excitation must be large enough so that it produces a discern-

ible component at that frequency in the response spectrum. The synthetic times series 

used for the FRF “measurement” were output from the open-source package 

OpenFAST by NREL [36]. Additional code was written into the source code of 

OpenFAST to allow harmonic forces to be applied at the tower top with different fre-

quencies and amplitudes. These forces can be applied separately in the FA/SS direc-

tions. The modified OpenFAST code was then compiled using Microsoft Visual Studio 

2015 to generate a new FAST executable file, from which the dynamic responses of 

wind turbines can be obtained and used to calculate the FRF matrix. 

4.2 Identification results with harmonic forces 

For the mean wind speed equal to 20 m/s, using the processes described in Section 2, 

the modal properties and aerodynamic modal damping matrix of the 2-DOF model were 

obtained. The calculated aerodynamic damping matrix is 

[
108.1 21.3
41.4 11.2

] (𝑘𝑁 · 𝑠/𝑚), 

which is the target to identify. 

The harmonic force amplitude was set to 10 kN (sensitivity to this setting is discussed 

later) and the harmonic excitation frequency varied from 0.2 Hz to 0.5 Hz, as this range 

contains the resonance frequency and allowed to obtain stable averaged damping coef-

ficients. The frequency increment for the harmonic forces was 0.01 Hz, except for the 

range from 0.3 Hz to 0.38 Hz where a smaller frequency increment of 0.004 Hz was 

chosen to obtain higher resolutions around the resonance frequency (0.34 Hz). The 

forces were separately applied to the FA and SS directions together with the aerody-

namic forces caused by the non-uniform wind field and corresponding responses rec-

orded. The FRF was obtained from the FFT of steady state responses divided by the 

FFT of the applied harmonic forces. The real parts of identified FRF curves are com-

pared with those calculated analytically in Figure 6. A small frequency shift was found 

around the resonance frequency, but for frequencies away from the resonance good 

agreement between the analytical FRF curves and the identified curves was obtained. 
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Calculation of the four aerodynamic damping coefficients was carried out from the fre-

quency-dependent estimations of these coefficients. The averaged damping matrix es-

timation is 

[
108.5 20.3
44.4 11.5

] (𝑘𝑁 · 𝑠/𝑚), 

which is close to the analytical values with small percentage differences: 

[
0.4 −4.6
7.3 2.2

] (%). 

  

(a) (b) 

  

(c) (d) 

Figure 6. Comparison the real part of analytical and identified 𝐻𝑥𝑥 (a), 𝐻𝑥𝑦 (b), 

𝐻𝑦𝑥 (c) and 𝐻𝑦𝑦 (d) with with harmonic excitations. 
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(a) (b) 

   

(c) (d) 

Figure 7. Comparison of the analytical and identified damping matrix coefficients 𝑐𝑥̅𝑥 

(a), 𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d) with with harmonic force excitation (10 kN) for 

mean wind speeds from 6 m/s to 20 m/s in 2 m/s steps. 

 

The identification with harmonic excitations was undertaken for non-uniform wind 

fields with mean wind speeds from 6 m/s to 20 m/s in 2 m/s steps. The identified results 

compared with analytical values are shown in Figure 7, confirming the generally good 

performance of the identification procedure using harmonic excitations. The percentage 

differences for the estimations of 𝑐𝑥̅𝑥 and 𝑐𝑦̅𝑥 are less than 10%, while for 𝑐𝑦̅𝑦 the 

percentage differences are less than 30%. For 𝑐𝑥̅𝑦, most percentage differences are 

around 20%. The accuracy of this method depends on the amplitude of the harmonic 

excitation, with larger harmonic forces giving more accurate results since in the 
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frequency domain the corresponding response due to the harmonic excitation is distinct 

and easier to identify. When the amplitude of the harmonic excitation is too low, it is 

hard to obtain FRFs accurate enough to achieve good estimation of the damping matrix. 

For the 5 MW reference onshore turbine used in this study, when the amplitudes of the 

harmonic excitation are lower than 5 kN, the damping matrix estimation is poor. Tests 

were also carried out with harmonic excitations with amplitudes of 100 kN, from which 

the estimation of the FRFs and the damping matrix is more accurate. For example, when 

the mean wind speed is 20 m/s, the identified damping coefficients 𝑐𝑥̅𝑥, 𝑐𝑥̅𝑦 and 𝑐𝑥̅𝑦 

have a percentage difference around 2% compared to the analytical values, while for 

the estimation of 𝑐𝑦̅𝑦 the percentage difference is 7%. However, in practice it would 

be difficult to apply large excitations of amplitude 100 kN. The selection of the force 

amplitude depends on the size, inertia and stiffness of the wind turbine, with smaller 

wind turbines requiring smaller forces for the identification based on harmonic excita-

tions. In practice, besides shakers to excite wind turbines, active tuned mass dampers 

could be used to harmonically excite the wind turbine (if installed), and this method 

was recommended by Oh and Ishihara [37]. 
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(a) (b) 

  

(c) (d) 

Figure 8. Comparison of the FA (a, c) and SS (b, d) responses from the FAST model 

and the model with identified damping ratios using 2 DOF matrix with harmonic 

excitation; (c) and (d) are zooms of (a) and (b). 

 

Using the identified damping matrix for 20 m/s mean wind speed to define the damping 

in the 2-DOF model, the generated responses are compared with those from FAST in 

Figure 8. The comparison shows that for both FA and SS directions the 2-DOF model 

with the identified damping matrix is able to generate similar responses compared to 

FAST, with TRAC values of 1.000 and 0.996 for the FA and SS directions respectively. 

Together with results from Section 3, these results demonstrate that the identified aer-

odynamic damping matrix allows the SS dynamic behaviour to be captured much more 



 

23 

 
 

accurately than when damping ratios identified using either the classic or modified SSI 

are used. As different identification methods and measured responses were used to ob-

tain the damping ratios in Figure 5 and the modal damping matrix in Figure 8, it is not 

straightforward to compare the performance. However, it should be noted that the iden-

tified damping ratios do not represent all of the damping mechanisms in the system, 

i.e., the cross-coupling between FA and SS motions.  

   

(a) (b) 

  

(c) (d) 

 

Figure 9. Comparison of the FA (a, c) and SS (b, d) responses from the FAST model 

and the model with only diagonal damping coefficients; (c) and (d) are zooms of (a) 

and (b). 
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As a final check, the off-diagonal terms in the aerodynamic damping matrix in the 2-

DOF model were set to zero, keeping only the diagonal terms in the damping in the 

matrix. This simulates a perfect identification of the diagonal damping ratios but re-

moves the coupling between the FA and SS. With the same wind field (20 m/s mean 

speed), the responses in the FA and SS directions from the 2-DOF model with only 

diagonal terms were computed and compared with those from FAST. The results are 

shown in Figure 9, and give TRAC values 1.000 and 0.928 for the FA and SS responses, 

respectively. This comparison shows that the FA responses are still very close, while 

the SS responses are quite different. From these results we can conclude that the full 

damping matrix, including the coupling between FA and SS direction is necessary to 

describe the vibration behaviour in the SS direction. Ignoring this coupling will lead to 

inaccurate predictions however accurate the identification of the diagonal damping 

terms is. Identifying damping ratios using OMA is standard practice and as such it was 

the intention of this section to see how the simulated dynamic behaviour of the system 

using these damping ratios compares to that obtained from the proposed damping 

model. 

5 Conclusions 

This paper proposes a novel methodology to identify the aerodynamic damping of wind 

turbines in operation. The study is based on a FE model representing the tower and 

simplified wind-rotor interaction based on blade element momentum calculations. The 

proposed identification technique is based on:  

1. Aerodynamic damping model developed in an earlier publication that captures 

the damping through a non-symmetric damping matrix. 

2. An unconventional reduction of the complete numerical model to a 2-DOF sys-

tem that is shown to capture well the dynamic behaviour of the system and was 

verified against FAST simulation results. Using this reduction limits the task of 

identification to a fully populated 2×2 damping matrix.  

3. Extending an existing FRF matrix-based damping identification (Chen et al. 

[35]). 

The transfer functions were obtained by applying harmonic force inputs in the FA and 

SS directions at the top of the tower (similar to traditional EMA under shaker 
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excitation). Identification results obtained from the proposed method were compared to 

existing standard and modified SSI based OMA techniques. The conclusions are: 

▪ The FA damping ratios can be identified well by all methods; 

▪ Existing OMA methods only identify the SS damping ratios with significant 

error; 

▪ The proposed new identification method can extract the 2×2 damping matrix 

with good accuracy, provided a force input with sufficient amplitude is applied. 

▪ In practice, the size of devices to generate external, harmonic forces needs care-

ful consideration for large wind turbine structures. 

▪ Identifying the full 2×2 damping matrix including the coupling between FA and 

SS is essential to correctly capture the vibration behaviour in the SS direction.  
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Appendix A 

To consider a non-uniform inflow wind field, some modifications are needed to the 

derivation process in Section 3.3 of reference [20]. Keeping the initial assumptions that 

the rotor is rigid and the RNA speed is small, the aerodynamic forces applied to one 

blade element can still be expressed by Equations (4) to (7) in [20]. However, when 

summing the elemental blade forces for one blade, the three blades must be considered 

individually as the total aerodynamic forces experienced by different blades are differ-

ent due to wind turbulence and different azimuthal positions. In this way, the aerody-

namic force resultants can still be linearized as forces applied to a rigid tower plus terms 

related to the tower top velocities. Using the notations introduced in [20], the total force 

at the tower top in the 𝑥 (FA) direction can be expressed as the sum of thrusts applied 

to all blades: 

The total force in the 𝑦 (SS) direction is: 

The total moment about the 𝑥 axis is: 

𝐹𝑥
𝐹𝑙𝑒𝑥(𝑡) =∑∫ 𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 

=∑∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

− 𝑥̇∑∫
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

− 𝜃̇𝑦∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

−𝑦̇∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

+ 𝜃̇𝑥∑∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

. 

(A. 1) 

 

𝐹𝑦
𝐹𝑙𝑒𝑥(𝑡) = −∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 

= −∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

+ 𝑥̇∑cos 𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

+𝜃̇𝑦∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

+ 𝑦̇∑cos2 𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

 

−𝜃̇𝑥∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

. 

(A. 2) 

 

𝑀𝑥
𝐹𝑙𝑒𝑥(𝑡) =∑∫ 𝑑𝑀𝑥(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 
(A. 3) 

 



 

30 

 
 

whereas the total moment about the 𝑦 axis is: 

The derivatives in Equations (A. 1) to (A. 4) can be found using expressions of partial 

derivatives in Appendix A in [20]. According to Equations (A. 1) to (A. 4), the resultant 

aerodynamic forces from the rotor to the top of a flexible wind turbine tower, 

𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) = [𝐹𝑥

𝐹𝑙𝑒𝑥(𝑡) 𝐹𝑦
𝐹𝑙𝑒𝑥(𝑡) 𝑀𝑥

𝐹𝑙𝑒𝑥(𝑡) 𝑀𝑦
𝐹𝑙𝑒𝑥(𝑡)]

𝑇
, can be rewritten in the following 

simplified form 

 

 

 

=∑∫ 𝑟𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

− 𝑥̇∑∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

− 𝜃̇𝑦∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

−𝑦̇∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

+ 𝜃̇𝑥∑∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

, 

𝑀𝑦
𝐹𝑙𝑒𝑥(𝑡) =∑∫ 𝑑𝑀𝑦(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 

=∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

− 𝑥̇∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

−𝜃̇𝑦∑cos2 𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

− 𝑦̇∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

 

+𝜃̇𝑥∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

. 

(A. 4) 

 

𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝

(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
 

∑∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

−∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

∑∫ 𝑟𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 

− 𝐂𝐴𝑒𝑟𝑜

[
 
 
 
 
𝑥̇
𝑦̇

𝜃̇𝑥
𝜃̇𝑦]
 
 
 
 

= 𝐅𝑅𝑖𝑔𝑖𝑑
𝑇𝑜𝑝 (𝑡) − 𝐂𝐴𝑒𝑟𝑜𝐮̇

𝑇𝑜𝑝(𝑡). 
(A. 5) 
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where 

𝐂𝐴𝑒𝑟𝑜 can be written more concisely: 

  

𝐂𝐴𝑒𝑟𝑜 = 

[
 
 
 
 
 
 
 
 
 
 
 
 

∑∫
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

−∑cos𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

−∑cos2 𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑cos2 𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

 

 

(A. 6) 

 

𝐂𝐴𝑒𝑟𝑜 =

[
 
 
 
𝑐𝑥𝑥 𝑐𝑥𝑦 𝑐𝑥𝜃𝑥 𝑐𝑥𝜃𝑦
𝑐𝑦𝑥 𝑐𝑦𝑦 𝑐𝑦𝜃𝑥 𝑐𝑦𝜃𝑦
𝑐𝜃𝑥𝑥 𝑐𝜃𝑥𝑦 𝑐𝜃𝑥𝜃𝑥 𝑐𝜃𝑥𝜃𝑦
𝑐𝜃𝑦𝑥 𝑐𝜃𝑦𝑦 𝑐𝜃𝑦𝜃𝑥 𝑐𝜃𝑦𝜃𝑦]

 
 
 
. 

(A. 7) 
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Appendix  

Chen et al.’s method [35] 

Given a dynamic system with mass, stiffness and damping matrices 𝐌, 𝐊 and 𝐂 ex-

cited by an external force 𝐟, the equation of motion is 

𝐌𝐱̈ + 𝐂𝐱̇ + 𝐊𝐱 = 𝐟 

Rewrite this equation of motion in the frequency domain: 

(−𝜔2𝐌+ 𝑖𝜔𝐂 + 𝐊)𝐗(𝜔) = 𝐅(𝜔) 

The frequency response function (FRF) matrix 𝐇(𝜔) is defined as: 

𝐇(𝜔) = (−𝜔2𝐌+ 𝑖𝜔𝐂 + 𝐊)−1 

The “normal” FRF 𝐇𝐍(𝜔) is defined with the undamped system: 

𝐇N(𝜔) = [𝐊 − 𝜔2𝐌]−1 

With the “normal” FRF, the frequency domain equation of motion can be written as 

[𝐇N(𝜔)]−1𝐗(𝜔) + 𝑖𝜔𝐂𝐗(𝜔) = 𝐅(𝜔) 

or 

𝐗(𝜔) + 𝑖𝐆(𝜔)𝐗(𝜔) = 𝐇𝑁(𝜔)𝐅(𝜔) 

where 

𝐆(𝜔) = 𝜔𝐇𝑁(𝜔)𝐂 

Therefore, the relationship between the measured FRF 𝐇(𝜔) and the “normal” FRF 

𝐇N(𝜔) is 

𝐇𝑁(𝜔) = [𝐈 + 𝑖𝐆(𝜔)]𝐇(𝜔) 

where 𝐈 is an identity matrix. Since 𝐇𝑁(𝜔) and 𝐆(𝜔) are real matrices, the imagi-

nary part of the RHS in the above equation is zero, giving 

𝐆(𝜔) = −im(𝐇(𝜔))[Re(𝐇(𝜔))]−1 

Finally, the damping matrix at any given frequency can be expressed by 

𝐂 =
1

𝜔
[𝐇𝐍(𝜔)]−1𝐆(𝜔) 

It should be noted that this damping identification method requires prior knowledge of 

the stiffness and mass matrices.  
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Appendix C 

Using the modal decomposition in Section 2.2, the corresponding 2-DOF model can be 

obtained. The modal mass matrix is 

[
1834 0
0 1834

] (𝑘𝑁/𝑚). 

The modal stiffness matrix is 

[
3990 0
0 3900

] (𝑘𝑁 · 𝑠2/𝑚). 

The modal stiffness and mass matrices for the 2-DOF model were assumed known be-

fore the estimation of damping matrix. 


