31 research outputs found

    Renormalized Kaluza-Klein theories

    Full text link
    Using six-dimensional quantum electrodynamics (QED6QED_6) as an example we study the one-loop renormalization of the theory both from the six and four-dimensional points of view. Our main conclusion is that the properly renormalized four dimensional theory never forgets its higher dimensional origin. In particular, the coefficients of the neccessary extra counterterms in the four dimensional theory are determined in a precise way. We check our results by studying the reduction of QED4QED_4 on a two-torus.Comment: LaTeX, 36 pages. A new section added; references improved, typos fixe

    Path integral formulation of Hodge duality on the brane

    Get PDF
    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank anti-symmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this note, we implement the Hodge duality via path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.Comment: 7 pages, LaTe

    Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates

    Full text link
    Logarithmic corrections to the extremal black hole entropy can be computed purely in terms of the low energy data -- the spectrum of massless fields and their interaction. The demand of reproducing these corrections provides a strong constraint on any microscopic theory of quantum gravity that attempts to explain the black hole entropy. Using quantum entropy function formalism we compute logarithmic corrections to the entropy of half BPS black holes in N=2 supersymmetric string theories. Our results allow us to test various proposals for the measure in the OSV formula, and we find agreement with the measure proposed by Denef and Moore if we assume their result to be valid at weak topological string coupling. Our analysis also gives the logarithmic corrections to the entropy of extremal Reissner-Nordstrom black holes in ordinary Einstein-Maxwell theory.Comment: LaTeX file, 66 page

    Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions

    Full text link
    We compute logarithmic corrections to the entropy of rotating extremal black holes using quantum entropy function i.e. Euclidean quantum gravity approach. Our analysis includes five dimensional supersymmetric BMPV black holes in type IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL models, and also non-supersymmetric extremal Kerr black hole and slowly rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black holes our results are in perfect agreement with the microscopic results derived from string theory. In particular we reproduce correctly the dependence of the logarithmic corrections on the number of U(1) gauge fields in the theory, and on the angular momentum carried by the black hole in different scaling limits. We also explain the shortcomings of the Cardy limit in explaining the logarithmic corrections in the limit in which the (super)gravity description of these black holes becomes a valid approximation. For non-supersymmetric extremal black holes, e.g. for the extremal Kerr black hole in four dimensions, our result provides a stringent testing ground for any microscopic explanation of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation between boundary condition and choice of ensemble, modified analysis for slowly rotating black holes, all results remain unchanged, typos corrected; v3: minor additions and correction

    Quantized bulk fermions in the Randall-Sundrum brane model

    Get PDF
    The lowest order quantum corrections to the effective action arising from quantized massive fermion fields in the Randall-Sundrum background spacetime are computed. The boundary conditions and their relation with gauge invariance are examined in detail. The possibility of Wilson loop symmetry breaking in brane models is also analysed. The self-consistency requirements, previously considered in the case of a quantized bulk scalar field, are extended to include the contribution from massive fermions. It is shown that in this case it is possible to stabilize the radius of the extra dimensions but it is not possible to simultaneously solve the hierarchy problem, unless the brane tensions are dramatically fine tuned, supporting previous claims.Comment: 25 pages, 1 figure, RevTe

    MHV Rules for Higgs Plus Multi-Gluon Amplitudes

    Get PDF
    We use tree-level perturbation theory to show how non-supersymmetric one-loop scattering amplitudes for a Higgs boson plus an arbitrary number of partons can be constructed, in the limit of a heavy top quark, from a generalization of the scalar graph approach of Cachazo, Svrcek and Witten. The Higgs boson couples to gluons through a top quark loop which generates, for large top mass, a dimension-5 operator H tr G^2. This effective interaction leads to amplitudes which cannot be described by the standard MHV rules; for example, amplitudes where all of the gluons have positive helicity. We split the effective interaction into the sum of two terms, one holomorphic (selfdual) and one anti-holomorphic (anti-selfdual). The holomorphic interactions give a new set of MHV vertices -- identical in form to those of pure gauge theory, except for momentum conservation -- that can be combined with pure gauge theory MHV vertices to produce a tower of amplitudes with more than two negative helicities. Similarly, the anti-holomorphic interactions give anti-MHV vertices that can be combined with pure gauge theory anti-MHV vertices to produce a tower of amplitudes with more than two positive helicities. A Higgs boson amplitude is the sum of one MHV-tower amplitude and one anti-MHV-tower amplitude. We present all MHV-tower amplitudes with up to four negative-helicity gluons and any number of positive-helicity gluons (NNMHV). These rules reproduce all of the available analytic formulae for Higgs + n-gluon scattering (n<=5) at tree level, in some cases yielding considerably shorter expressions.Comment: 34 pages, 8 figures; v2, references correcte

    Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes

    Get PDF
    We study the renormalized stress-energy tensor (RSET) for static quantum states on (n+1)-dimensional, static, spherically symmetric black holes. By solving the conservation equations, we are able to write the stress-energy tensor in terms of a single unknown function of the radial co-ordinate, plus two arbitrary constants. Conditions for the stress-energy tensor to be regular at event horizons (including the extremal and ``ultra-extremal'' cases) are then derived using generalized Kruskal-like co-ordinates. These results should be useful for future calculations of the RSET for static quantum states on spherically symmetric black hole geometries in any number of space-time dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for publication in General Relativity and Gravitatio

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MW≫B≫me,T,ÎŒ,∣p∣M_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong B≫T2B\gg T^{2} and weakly-strong B≳T2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference

    Solitonic D-branes and brane annihilation

    Full text link
    We point out some intriguing analogies between field theoretic solitons (topological defects) and D-branes. Annihilating soliton-antisoliton pairs can produce stable solitons of lower dimensionality. Solitons that localize massless gauge fields in their world volume automatically imply the existence of open flux tubes ending on them and closed flux tubes propagating in the bulk. We discuss some aspects of this localization on explicit examples of unstable wall-anti-wall systems. The annihilation of these walls can be described in terms of tachyon condensation which renders the world-volume gauge field non-dynamical. During this condensation the world volume gauge fields (open string states) are resonantly excited. These can later decay into closed strings, or get squeezed into a network flux tubes similar to a network of cosmic strings formed at a cosmological phase transition. Although, as in the DD-brane case, perturbatively one can find exact time-dependent solutions, when the energy of the system stays localized in the plane of the original soliton, such solutions are unstable with respect to decay into open and closed string states. Thus, when a pair of such walls annihilates, the energy is carried away (at least) by closed string excitations (``glueballs''), which are the lowest energy excitations about the bulk vacuum. Suggested analogies can be useful for the understanding of the complicated D-brane dynamics and of the production of topological defects and reheating during brane collision in the early universe.Comment: a typo correcte
    corecore