13 research outputs found

    A crowdsourced global data set for validating built-up surface layers

    Get PDF
    Several global high-resolution built-up surface products have emerged over the last five years, taking full advantage of open sources of satellite data such as Landsat and Sentinel. However, these data sets require validation that is independent of the producers of these products. To fill this gap, we designed a validation sample set of 50 K locations using a stratified sampling approach independent of any existing global built-up surface products. We launched a crowdsourcing campaign using Geo-Wiki (https://www.geo-wiki.org/) to visually interpret this sample set for built-up surfaces using very high-resolution satellite images as a source of reference data for labelling the samples, with a minimum of five validations per sample location. Data were collected for 10 m sub-pixels in an 80 × 80 m grid to allow for geo-registration errors as well as the application of different validation modes including exact pixel matching to majority or percentage agreement. The data set presented in this paper is suitable for the validation and inter-comparison of multiple products of built-up areas

    A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform

    Get PDF
    A global reference data set on cropland was collected through a crowdsourcing campaign using the Geo-Wiki crowdsourcing tool. The campaign lasted three weeks, with over 80 participants from around the world reviewing almost 36,000 sample units, focussing on cropland identification. For quality assessment purposes, two additional data sets are provided. The first is a control set of 1,793 sample locations validated by students trained in satellite image interpretation. This data set was used to assess the quality of the crowd as the campaign progressed. The second data set contains 60 expert validations for additional evaluation of the quality of the contributions. All data sets are split into two parts: the first part shows all areas classified as cropland and the second part shows cropland average per location and user. After further processing, the data presented here might be suitable to validate and compare medium and high resolution cropland maps generated using remote sensing. These could also be used to train classification algorithms for developing new maps of land cover and cropland extent

    Developing and applying a multi-purpose land cover validation dataset for Africa

    No full text
    The production of global land cover products has accelerated significantly over the past decade thanks to the availability of higher spatial and temporal resolution satellite data and increased computation capabilities. The quality of these products should be assessed according to internationally promoted requirements e.g., by the Committee on Earth Observation Systems-Working Group on Calibration and Validation (CEOS-WGCV) and updated accuracy should be provided with new releases (Stage-4 validation). Providing updated accuracies for the yearly maps would require considerable effort for collecting validation datasets. To save time and effort on data collection, validation datasets should be designed to suit multiple map assessments and should be easily adjustable for a timely validation of new releases of land cover products. This study introduces a validation dataset aimed to facilitate multi-purpose assessments and its applicability is demonstrated in three different assessments focusing on validating discrete and fractional land cover maps, map comparison and user-oriented map assessments. The validation dataset is generated primarily to validate the newly released 100m spatial resolution land cover product from the Copernicus Global Land Service (CGLS-LC100). The validation dataset includes 3617 sample sites in Africa based on stratified sampling. Each site corresponds to an area of 100m×100 m. Within site, reference land cover information was collected at 100 subpixels of 10m×10m allowing the land cover information to be suitable for different resolution and legends. Firstly, using this dataset, we validated both the discrete and fractional land cover layers of the CGLS-LC100 product. The CGLS-LC100 discrete map was found to have an overall accuracy of 74.6 ± 2.1% (at 95% confidence level) for the African continent. Fraction cover products were found to have mean absolute errors of 9.3, 8.8, 16.2, and 6.5% for trees, shrubs, herbaceous vegetation and bare ground, respectively. Secondly, for user-oriented map assessment, we assessed the accuracy of the CGLS-LC100 map from four user groups' perspectives (forest monitoring, crop monitoring, biodiversity and climate modelling). Overall accuracies for these perspectives vary between 73.7% ± 2.1% and 93.5% ± 0.9%, depending on the land cover classes of interest. Thirdly, for map comparison, we assessed the accuracy of the Globeland30-2010 map at 30m spatial resolution. Using the subpixel level validation data, we derived 15,252 sample pixels at 30m spatial resolution. Based on these sample pixels, the overall accuracy of the Globeland30-2010 map was found to be 66.6 ± 2.4% for Africa. The three assessments exemplify the applicability of multi-purpose validation datasets which are recommended to increase map validation efficiency and consistency. Assessments of subsequent yearly maps can be conducted by augmenting or updating the dataset with sample sites in identified change areas.JRC.D.6-Knowledge for Sustainable Development and Food Securit

    A global dataset of crowdsourced land cover and land use reference data (2011-2012)

    No full text
    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general

    A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform

    No full text
    A global reference dataset on cropland was collected through a crowdsourcing campaign using the Geo-Wiki crowdsourcing tool. The campaign lasted three weeks, with over 80 participants from around the world reviewing almost 36,000 sample units, focussing on cropland identification. For quality assessment purposes, two additional data sets are provided. The first is a control set of 1793 sample locations validated by students trained in satellite image interpretation. This dataset was used to assess the quality of the crowd as the campaign progressed. The second dataset contains 60 expert validations for additional evaluation of contributions quality. All data sets are split into two parts: the first part shows all areas classified as cropland and the second part shows cropland average per location and user. The results of the cropland validation campaign can be used to validate and compare medium and high resolution cropland maps that have been generated using remote sensing. These can also be used to train classification algorithms for developing new maps of land cover and cropland extent.JRC.D.5-Food Securit
    corecore