19 research outputs found

    Functional Analysis of Lactic Acid Bacteria and Bifidobacteria and Their Effects on Human Health

    Get PDF
    Many lactic acid bacteria (LAB) and Bifidobacteria are beneficial components of human, animal, foods, and beverage microbiota [...]This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant number RTI2018-097114-B-I00

    Supramolecular Structure and Renaturation of a (1→3)-β-D-Glucan Compared with Curdlan and Scleroglucan

    Get PDF
    A (1→3)-β-D-Glucan produced by Lactobacillus suebicus CUPV221 strain was investigated by tapping mode atomic force microscopy (TM-AFM), to compare its supramolecular structure and conformation with two commercial polysaccharides: curdlan and scleroglucan. It was found that the β-D-Glucan was a (1→3)(1→2)-β-D-Glucan and at room temperature formed three-dimensional networks by entanglements between strands, as does scleroglucan. However, (1→3)(1→2)-β-D-Glucan strands seemed to be more stiff than those of scleroglucan. It was also observed that curdlan samples deposited from 5 mM NaOH aqueous solution showed supermolecular assemblies, recognized in the literature as micelles, which are controlled by hydrophobic hydration. The (1→3)(1→2)-β-D-Glucan in alkaline aqueous solutions produced different supramolecular structures depending on pH, and at 0.4 M NaOH (pH 13.16), denaturation took place. After neutralizing the alkaline solution with HCl, the formation of short linear, circular, and hairpin structures was observed.This study was supported by grants AGL2009-12998-C03 and AGL2012-40084 from the Spanish Ministry of Science and Innovation, and IT335-10 from the Basque Government. Ana Isabel Puertas acknowledges the “Gobierno Vasco, Dpto. Agricultura, Pesca y Alimentación” for the fellowship

    Exopolysaccharide-producing Lacticaseibacillus paracasei strains isolated from kefir as starter for functional dairy products

    Get PDF
    Exopolysaccharides (EPS) produced by lactic acid bacteria are molecules of great interest for the dairy food industry. Lacticaseibacillus paracasei CIDCA 8339, CIDCA 83123, and CIDCA 83124 are potentially probiotic strains isolated from kefir grains whose EPS-production on MRS broth is dependent on incubation temperature. The aim of the present work is to evaluate the effect of fermentation temperature on the characteristics of EPS produced in milk by L. paracasei strains and the consequent impact on the rheological properties of the fermented products. Additionally, the protective effect of these EPS against Salmonella infection was evaluated in vitro. Acid gels with each strain were obtained by milk fermentation at 20°C, 30°C, and 37°C evidencing for all the strains a reduction in growth and acidification rate at lower temperature. Lacticaseibacillus paracasei CIDCA 83123 showed low fermentation rate at all temperatures requiring between 3 and 8 days to obtain acids gels, whereas CIDCA 8339 and 83124 needed between 24 and 48 h even when the temperature was 20°C. Fermentation temperature led to changes in crude EPS characteristics of the three strains, observing an increase in the relative amount of the high molecular weight fraction when the fermentation temperature diminished. Additionally, EPS83124 and EPS83123 presented modifications in monosaccharide composition, with a reduction of rhamnose and an increase of amino-sugars as temperature rise. These changes in the structure of EPS83124 resulted in an increase of the apparent viscosity of milks fermented at 20°C (223 mPa.s) and 30°C (217 mPa.s) with respect to acid gels obtained at 37°C (167 mPa.s). In order to deepen the knowledge on EPS characteristics, monosaccharide composition of low and high molecular weight EPS fractions were evaluated. Finally, it was evidenced that the preincubation of intestinal epithelial cells Caco-2/TC-7 with EPS8339 and EPS83124 partially inhibit the association and invasion of Salmonella. In light of these results, it can be concluded that the selection of the EPS-producing strain along with the appropriate fermentation conditions could be an interesting strategy to improve the technological properties of these L. paracasei fermented milks with potential protective effects against intestinal pathogens.The present work was supported by CONICET (PIP 2786), Universidad Nacional de La Plata (UNLP 18/X813), ANPCyT (PICT 2020-03973 and PICT 2020-3239), and the Basque Government (IT1662-22 and PIBA 2020_1_0032)

    Quantitative Determination of Acrolein in Cider by 1H NMR Spectrometry

    Get PDF
    Acrolein occasionally appears in cider, completely spoiling its quality due to its bitter taste. It is crucial to detect it in the early steps, before the taste is severely affected, to apply the appropriate treatment. A simple and rapid analytical method to determine this compound in cider is therefore desirable. In this work, a quantitative determination method of acrolein in cider is proposed using the proton nuclear magnetic resonance technique (1H NMR). Acrolein produces a doublet signal in the spectrum at 9.49 ppm, whose area is used to determine the concentration of this compound. 3-(trimethylsilyl)-2,2,3,3-d4-propionic acid sodium salt is added to the cider as a reference for 0.00 ppm and 1,3,5-benzenetricarboxylic acid as an internal standard for acrolein determination. The method is validated by gas chromatography (GC). There is a good correlation between the acrolein concentrations obtained by 1H NMR and by gas chromatography in different commercial ciders (Pearson coefficient 0.9994). The 95% confidence interval for the intercept is 0.15 ± 0.49 (includes 0) and for the slope is 0.98 ± 0.03 (includes 1). When applying the paired t test, no significant difference is observed. The proposed method is direct, and no prior derivatization is needed

    Compression Molded Soy Protein Films with Exopolysaccharides Produced by Cider Lactic Acid Bacteria

    Get PDF
    settings Open AccessArticle Compression Molded Soy Protein Films with Exopolysaccharides Produced by Cider Lactic Acid Bacteria by Jone Uranga 1, Mª Goretti Llamas 2, Ziortza Agirrezabala 2, María Teresa Dueñas 2 [OrcID] , Oier Etxebeste 2 [OrcID] , Pedro Guerrero 1,* [OrcID] and Koro de la Caba 1,* [OrcID] 1 BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain 2 GLYCOBAL Research Group, Facultad de Química, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain * Authors to whom correspondence should be addressed. Polymers 2020, 12(9), 2106; https://doi.org/10.3390/polym12092106 Received: 21 August 2020 / Revised: 12 September 2020 / Accepted: 14 September 2020 / Published: 16 September 2020 (This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Spain (2020,2021)) Download PDF Browse Figures Abstract Two exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) strains, Liquorilactobacillus (L.) sp CUPV281 and Liquorilactobacillus (L.) mali CUPV271, were isolated from Spanish apple must. Each of the strains produced a dextran, with different branching degrees, to be incorporated into soy protein isolate (SPI) film-forming formulations. Films were prepared by compression molding, a more rapid processing method than solution casting and, thus, with a greater potential for scaling-up production. Thermal analysis showed that SPI and EPS start the degradation process at temperatures above 190 °C, confirming that the compression temperature selected (120 °C) was well below the corresponding degradation temperatures. Resulting films were transparent and homogeneous, as shown by UV-Vis spectroscopy and SEM, indicating the good compatibility between SPI and EPS. Furthermore, FTIR analysis showed that the interactions between SPI and EPS were physical interactions, probably by hydrogen bonding among the polar groups of SPI and EPS. Regarding antifungal/fungistatic activity, LAB strains used in this study showed an inhibitory effect on germination of fungal spores.This research was funded by MCIU/AEI/FEDER, UE (RTI2018-097100-B-C22), the Basque Government (KK-2019/00076), and the University of the Basque Country (GIU18/154, GIU19/014 and PPGA19/08)

    Characterization of the heteropolysaccharides produced by Liquorilactobacillus sicerae CUPV261 and Secundilactobacillus collinoides CUPV237 isolated from cider

    Get PDF
    Some lactic acid bacteria (LAB) strains isolated from alcoholic beverages are able to produce exopolysaccharides (EPS). The present work focuses on the physico-chemical characterization of the heteropolysaccharides (HePS) produced by Liquorilactobacillus sicerae CUPV261T (formerly known as Lactobacillus sicerae) and Secundilactobacillus collinoides CUPV237 (formerly known as Lactobacillus collinoides) strains isolated from cider. Genome sequencing and assembly enabled the identification of at least four putative HePS gene clusters in each strain, which correlated with the ability of both strains to secrete EPS. The crude EPS preparation from CUPV261T contained glucose, galactose and rhamnose, and that of CUPV237 was composed of glucose, galactose and N-acetylglucosamine. Both EPS were mixtures of HePS of different composition, with two major soluble components of average molecular weights (Mw) in the range of 106 and 104 g.mol−1. These HePS were resistant to gastric stress conditions in an in vitro model, and they significantly reduced zebrafish larvae mortality in an in vivo model of inflammatory bowel disease.This research was funded by the Spanish Ministry of Science, Innovation and Universities (grant RTI2018-097114-B-I00 to P.L. and M.T.D.), by the Basque Government (grants KK-2019/00076, KK-2021/00034, KK-2022/00107, IT1662-22 and PIBA_2020_1_0032 to M.T.D and O.E.) and by the University of the Basque Country (GIU19/014)

    Procedimiento de detección molecular de bacterias ácido lácticas productoras de β-glucanos.

    Get PDF
    Esta invención presenta un nuevo método de detección e identificación rápida de bacterias ácido lácticas productoras de exopolisacáridos por amplificación de su gen gtf codificante de una glicosil transferasa. La utilización de este método podría permitir la prevención del ahilamiento de bebidas alcohólicas y el aislamiento de nuevas estirpes que podrían ser utilizadas para la producción de alimentos fermentados.Solicitud: 200402176 (11.09.2004)Nº Pub. de Solicitud: ES2315038A1 (16.03.2009)Nº de Patente: ES2315038B1 (29.12.2009

    Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin

    Get PDF
    Many lactic acid bacteria (LAB) produce metabolites with applications in the food industry, such as dextran-type exopolysaccharides (EPS) and riboflavin (vitamin B2). Here, 72 bacteria were isolated from sourdoughs made by Spanish bread-makers. In the presence of sucrose, colonies of 22 isolates showed a ropy phenotype, and NMR analysis of their EPS supported that 21 of them were dextran producers. These isolates were identified by their random amplified polymorphic DNA (RAPD) patterns and their rrs and pheS gene sequences as LAB belonging to four species (Weissella cibaria, Leuconostoc citreum, Leuconostoc falkenbergense and Leuconostoc mesenteroides). Six selected strains from the Leuconostoc (3) and Weissella (3) genera grew in the absence of riboflavin and synthesized vitamin B2. The EPS produced by these strains were characterized as dextrans by physicochemical analysis, and the L. citreum polymer showed an unusually high degree of branching. Quantification of the riboflavin and the EPS productions showed that the W. cibaria strains produce the highest levels (585–685 μg/and 6.5–7.4 g/L, respectively). Therefore, these new LAB strains would be good candidates for the development of fermented foods bio-fortified with both dextrans and riboflavin. Moreover, this is the first report of riboflavin and dextran production by L. falkenbergense.This research was funded by the Spanish Ministry of Science, Innovation and Universities, (grants RTI2018-097114-B-I00 and PCIN-2017-075), by the Basque Government Industry and Education Department (grant PIBA_2020_1_0032) and by the University of the Basque Country (General Grant to Research Groups (GIU 19/014))

    Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin

    Get PDF
    Many lactic acid bacteria (LAB) produce metabolites with applications in the food industry, such as dextran-type exopolysaccharides (EPS) and riboflavin (vitamin B2). Here, 72 bacteria were isolated from sourdoughs made by Spanish bread-makers. In the presence of sucrose, colonies of 22 isolates showed a ropy phenotype, and NMR analysis of their EPS supported that 21 of them were dextran producers. These isolates were identified by their random amplified polymorphic DNA (RAPD) patterns and their rrs and pheS gene sequences as LAB belonging to four species (Weissella cibaria, Leuconostoc citreum, Leuconostoc falkenbergense and Leuconostoc mesenteroides). Six selected strains from the Leuconostoc (3) and Weissella (3) genera grew in the absence of riboflavin and synthesized vitamin B2. The EPS produced by these strains were characterized as dextrans by physicochemical analysis, and the L. citreum polymer showed an unusually high degree of branching. Quantification of the riboflavin and the EPS productions showed that the W. cibaria strains produce the highest levels (585–685 μg/and 6.5–7.4 g/L, respectively). Therefore, these new LAB strains would be good candidates for the development of fermented foods bio-fortified with both dextrans and riboflavin. Moreover, this is the first report of riboflavin and dextran production by L. falkenbergense.This research was funded by the Spanish Ministry of Science, Innovation and Universities, (grants RTI2018-097114-B-I00 and PCIN-2017-075), by the Basque Government Industry and Education Department (grant PIBA_2020_1_0032) and by the University of the Basque Country (General Grant to Research Groups (GIU 19/014))

    Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms

    Get PDF
    Probiotics, prebiotics and synbiotics are frequently-used components for the elaboration of functional food. Currently, most of the commercialized probiotics are limited to a few strains of the genera Bifidobacteria, Lactobacillus and Streptococcus, most of which produce exopolysaccharides (EPS). This suggests that the beneficial properties of these microorganisms may be related to the biological activities of these biopolymers. In this work we report that a 2-substituted-(1,3)-β-d-glucan of non-dairy bacterial origin has a prebiotic effect on three probiotic strains. Moreover, the presence of this β-d-glucan potentiates in vitro adhesion of the probiotic Lactobacillus plantarum WCFS1 to human intestinal epithelial cells
    corecore