7 research outputs found

    Anthracnose: A new strawberry disease in Serbia and its control by fungicides

    Get PDF
    Anthracnose is a destructive disease of strawberry fruits in warm and continental climate. During 2004, in the vicinity of Valjevo, there were severe losses in two strawberry plantations due to fruit anthracnose. Two fungal isolates, GG-6A and GG-JUP were recovered from strawberry stolons and fruits showing severe anthracnose symptoms. Based on morphological and pathological characteristics, and PCR analyses with specific primers of reference species, isolate GG-6A was identified as Colletotrichum gloeosporioides, and GG-JUP isolate as C. acutatum. This is the first identification of C. acutatum in strawberry in Serbia. In order to control strawberry anthracnose, five fungicides and their combinations were applied four times during the flowering. The best fruit protection was achieved by fungicides Metiram + piraclostrobin (Cabrio top), Captan FL and Fludioksinil + ciprodinil (Swich). Less effective were Benomil (Benlate) and Krezoksim-metil (Stroby). Pathogen is transmitted by planting material, so phytosanitary measures are extremely important in preventing the disease

    Detection and molecular characterization of a phytoplasma associated with frogskin disease in Cassava.

    Get PDF
    none7Cassava frogskin disease (CFSD) is an economically important root disease of cassava (Manihot esculenta) in Colombia and other South American countries, including Brazil, Venezuela, Peru, Costa Rica, and Panama. The roots of severely affected plants are thin, making them unsuitable for consumption. In Colombia, phytoplasma infections were confirmed in 35 of 39 genotypes exhibiting mild or severe CFSD symptoms either by direct or nested polymerase chain reaction (PCR) assays employing ribosomal (r)RNA operon primer pairs. The CFSD-associated phytoplasmas were identified as group 16SrIII strains by restriction fragment length polymorphism (RFLP) and sequence analyses of amplified rDNA products, and results were corroborated by PCRs employing group 16SrIII-specific rRNA gene or ribosomal protein (rp) gene primers. Collectively, RFLP analyses indicated that CFSD strains differed from all phytoplasmas described previously in group 16SrIII and, on this basis, the strains were tentatively assigned to new ribosomal and ribosomal protein subgroups 16SrIII-L and rpIII-H, respectively. This is the first molecular identification of a phytoplasma associated with CFSD in cassava in Colombia.mixedAlvarez E.; J.F. Mejia; G.A. Llano; J.B. Loke; A. Calari; B. Duduk; A. BertacciniAlvarez E.; J.F. Mejia; G.A. Llano; J.B. Loke; A. Calari; B. Duduk; A. Bertaccin

    Analysis of the Complete Genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and Their Comparison to the Obligate Parasites from 'Candidatus Phytoplasma'

    Get PDF
    Analysis of the completely determined genomes of the plant-derived Acholeplasma brassicae strain O502 and A. palmae strain J233 revealed that the circular chromosomes are 1,877,792 and 1,554,229 bp in size, have a G + C content of 36 and 29%, and encode 1,690 and 1,439 proteins, respectively. Comparative analysis of these sequences and previously published genomes of A. laidlawii strain PG-8, ‘Candidatus Phytoplasma asteris' strains, ‘Ca. P. australiense' and ‘Ca. P. mali' show a limited shared basic genetic repertoire. The acholeplasma genomes are characterized by a low number of rearrangements, duplication and integration events. Exceptions are the unusual duplication of rRNA operons in A. brassicae and an independently introduced second gene for a single-stranded binding protein in both genera. In contrast to phytoplasmas, the acholeplasma genomes differ by encoding the cell division protein FtsZ, a wide variety of ABC transporters, the F₀F1 ATP synthase, the Rnf-complex, SecG of the Sec-dependent secretion system, a richly equipped repertoire for carbohydrate metabolism, fatty acid, isoprenoid and partial amino acid metabolism. Conserved metabolic proteins encoded in phytoplasma genomes such as the malate dehydrogenase SfcA, several transporters and proteins involved in host-interaction, and virulence-associated effectors were not predicted for the acholeplasmas.Peer Reviewe
    corecore