175 research outputs found

    Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    Get PDF
    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement

    Thermal barrier coating life prediction model development

    Get PDF
    The objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep

    Effect of bond coat creep and oxidation on TBC integrity

    Get PDF
    The potential of thermal barrier coatings (TBCs) on high-pressure turbine (HPT) nozzles and blades is limited at present by the inability to quantitatively predict TBC life for these components. The goal is to isolate the major TBC failure mechanisms, which is part of the larger program aimed at developing TBC life prediction models. Based on the results of experiments to isolate TBC failure mechanisms, the effects of bond coat oxidation and bond coat creep on TBC integrity is discussed. In bond coat oxidation experiments, Rene prime 80 specimens coated with a NiCrAlY/ZrO2-8 percent Y2O3 TBC received isothermal pre-exposures at 2000 F in static argon, static air, or received no pre-exposure. The effects of oxidation due to the pre-exposures were determined by thermal cycle tests in both static air and static argon at 2000 F. To study the effect of bond coat creep on TBS behavior, four bond coats with different creep properties were evaluated by thermal cycle tests in air at 2000 F. The test results, the relative importance of these two failure mechanisms, and how their effects may be quantified will also be discussed

    Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas

    Get PDF
    This study considers whether spikes in nitrate in snow sampled at Summit, Greenland, from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, solar proton event (SPE)-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies

    Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event

    Get PDF
    Abstract This study considers whether spikes in nitrate in snow sampled at Summit, Greenland, from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, solar proton event (SPE)-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies. Key Points A global model simulates nitrate deposition from solar proton events Soluble ion correlations in Summit snow identify tropospheric sources of nitrate Nitrate ions in snow are found not to be a good proxy for solar proton events

    Thermal barrier coating life prediction model

    Get PDF
    The objectives of this program are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. The program is divided into two phases, each consisting of several tasks. The work in Phase 1 is aimed at identifying the relative importance of the various failure modes, and developing and verifying life prediction model(s) for the predominant model for a thermal barrier coating system. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in Phase 2 will develop design-capable, causal, life prediction models for thermomechanical and thermochemical failure modes, and for the exceptional conditions of foreign object damage and erosion

    Measurement of the permeability of tungsten to hydrogen and to oxygen Final report

    Get PDF
    Permeation rate measurements of hydrogen and oxygen through tungsten at elevated temperature

    The fork protection complex recruits FACT to reorganize nucleosomes during replication

    Get PDF
    Chromosome replication depends on efficient removal of nucleosomes by accessory factors to ensure rapid access to genomic information. Here, we show this process requires recruitment of the nucleosome reorganization activity of the histone chaperone FACT. Using single-molecule FRET, we demonstrate that reorganization of nucleosomal DNA by FACT requires coordinated engagement by the middle and C-terminal domains of Spt16 and Pob3 but does not require the N-terminus of Spt16. Using structure-guided pulldowns, we demonstrate instead that the N-terminal region is critical for recruitment by the fork protection complex subunit Tof1. Using in vitro chromatin replication assays, we confirm the importance of these interactions for robust replication. Our findings support a mechanism in which nucleosomes are removed through the coordinated engagement of multiple FACT domains positioned at the replication fork by the fork protection complex

    Measurement of the permeability of tungsten to nitrogen Final report

    Get PDF
    Permeation of nitrogen through arc-cast tungste

    Nitrate Deposition to Surface Snow at Summit, Greenland, Following the 9 November 2000 Solar Proton Event

    Get PDF
    This study considers whether spurious peaks in nitrate ions in snow sampled at Summit, Greenland from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, SPE-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate ion peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies
    • …
    corecore