
 
�

Nitrate deposition to surface snow at Summit, Greenland  
following the 9 November 2000 solar proton event 

Katharine A. Duderstadt, Jack E. Dibb, Nathan A. Schwadron, and Harlan E. Spence, 
Earth, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 
Durham, New Hampshire, USA. 
 
Charles H. Jackman, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA. 
 
Cora E. Randall, Laboratory for Atmospheric and Space Physics, University of Colorado, 
Boulder, Colorado, USA.  
 
Stanley C. Solomon and Michael J. Mills, National Center for Atmospheric Research, 
Boulder, Colorado, USA.  
 
 
 
Corresponding author: K. A. Duderstadt, Earth Systems Research Center, University of 
New Hampshire, Durham, NH 03824, USA. (duderstadtk@gust.sr.unh.edu) 
 
 

https://ntrs.nasa.gov/search.jsp?R=20140012686 2019-08-31T18:46:42+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42724768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
�

Abstract 
 
This study considers whether spurious peaks in nitrate ions in snow sampled at Summit, 

Greenland from August 2000 to August 2002 are related to solar proton events. After 

identifying tropospheric sources of nitrate on the basis of correlations with sulfate, 5 

ammonium, sodium, and calcium, we use the three-dimensional global Whole 

Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate 

spikes. Model calculations confirm that solar proton events significantly impact HOx, 

NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months 

following the major 9 November 2000 solar proton event. However, SPE-enhanced NOy 10 

calculated within the atmospheric column is too small to account for the observed nitrate 

ion peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not 

readily accounted for by measurement correlations are likely of anthropogenic origin. 

These results, consistent with other recent studies, imply that nitrate spikes in ice cores 

are not suitable proxies for individual SPEs and motivate the need to identify alternative 15 

proxies. 
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1. Introduction 

     Identifying the impact of solar particle storms on the atmosphere remains fundamental 20 

in understanding the Sun's influence on Earth's climate [Gray et al., 2010; National

Research Council, 2012]. High-energy particles from these solar events increase odd 

nitrogen and odd hydrogen, catalytically destroying ozone and thereby potentially 

impacting climate through the chemistry, radiative budget, and dynamics of the upper 

atmosphere [e.g., Randall et al., 2005; Jackman et al., 2008]. In addition, these space 25 

weather events have the potential to disrupt power grids, communications technology, 

and spacecraft [National Research Council, 2008]. 

     Direct observations of solar energetic particle events have only been available since 

the mid-20th century. A broader understanding of the potential frequency and intensity of 

these events requires a more extensive record of historical occurrences, motivating the 30 

search for indirect proxy evidence [Schrijver et al., 2012]. There is extensive analytical 

and predictive research using nitrate variability in polar ice cores as a proxy for solar 

energetic particle events [e.g., Zeller and Parker, 1981; Dreschhoff and Zeller, 

1990; McCracken et al., 2001a; Shea et al., 2006; Kepko et al., 2009]. However, this 

relationship has been questioned, particularly with regard to the short timescales 35 

associated with individual events [e.g., Legrand and Delmas, 1986; Wolff et al., 2008; 

Wolff et al., 2012]. Contemporary progress toward predicting space weather urgently 

awaits the resolution of whether or not nitrate ion spikes in ice cores can be used to infer 

past events [e.g., Barnard et al., 2011; Riley, 2012].  

     Zeller and Parker [1981] associated nitrate levels with solar activity through the 40 

correlation of nitrate ions (NO3
-) in Antarctic ice cores with cosmogenic carbon isotopes 
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(14C) in tree rings. Statistical correlation studies confirm the covariance between nitrate 

ions and cosmogenic radionuclides 14C and 10Be on centennial to millennial timescales 

[e.g., McCracken et al., 2001b; Traversi et al., 2012; Ogurtsov and Oinonen, 2014]. 

However, attempts to find a correlation between nitrate ions and solar variability on 45 

smaller timescales, such as the 11-year solar cycle or individual events, have been 

unsuccessful [e.g., Legrand and Delmas, 1986; Legrand and Kirchner, 1990; Legrand et 

al., 1996; Traversi et al., 2012]. Instead, the variability of nitrate ions in polar ice is 

attributable to lightning from lower latitudes and downward transport from the lower 

stratosphere [Legrand and Delmas, 1986; Legrand et al., 1989; Legrand et al., 1996], 50 

with potential contributions in the Arctic from anthropogenic pollution [Mayewski et al., 

1990] and biomass burning [e.g., Whitlow et al., 1994; Dibb and Jafrezzo, 1997; 

Savarino and Legrand, 1998]. 

     Efforts to attribute sharp nitrate ion peaks in ice cores to individual solar proton events 

are exemplified by the Zeller and Dreschhoff [1995] analysis of 8000 years of nitrate data 55 

from the GISP2-H Greenland ice core and the estimated cumulative probabilities of solar 

event occurrences by McCracken et al. [2001a]. Palmer et al. [2001] provide 

observational evidence of a small statistical background increase in nitrate ions as a result 

of individual SPE events. However, theoretical considerations and model simulations 

suggest that enhancements of nitrogen species from individual solar events are unlikely to 60 

produce sharp peaks in nitrate ions at the surface, given the slow rate of vertical transport 

in the stratosphere, horizontal mixing and dilution to lower latitudes, and diabatic 

recirculation [e.g., Legrand et al., 1989; Legrand and Kirchner, 1990]. In addition, 

Weller et al. [2011] find no indication of individual solar events in 25 years of 
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atmospheric aerosol measurements in Antarctica. Wolff et al. [2008; 2012] are able 65 

instead to attribute nitrate ion peaks to tropospheric sources using correlations among a 

suite of ions in surface snow.  

     This paper presents a case study adding to a growing literature that challenges the 

validity of using nitrate spikes in ice as proxies for individual solar energetic particle 

events. A three-dimensional global simulation of the 9 November 2000 solar proton event 70 

using the Whole Atmosphere Community Climate Model (WACCM) combined with 

daily samples of nitrate ions in surface snow at Summit, Greenland demonstrates the 

difficulty in generating impulsive enhancements in nitrate deposition in snow and ice 

from a single event. The results of this study, however, reiterate the significant influence 

of solar energetic particles on the chemical composition of the Arctic polar stratosphere 75 

and mesosphere, especially levels of odd nitrogen and ozone, encouraging the search for 

robust proxies other than nitrate to determine the frequency and intensity of historical 

solar events. 

 

2. Methods 80 

2.1. Schematic of Solar Protons Events and Nitrate Precursors

     Solar energetic particles precipitating into our atmosphere include electrons, protons, 

and more massive ions. Our study focuses on solar proton events (SPEs), as solar protons 

uniquely possess sufficient energies to penetrate and modify the chemistry of the 

mesosphere and stratosphere, potentially leading to chemical signatures within the 85 

troposphere and at the surface. Figure 1 presents a schematic of the perturbations caused 

by solar energetic protons within the polar atmosphere. High-energy protons from solar 
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flares and coronal mass ejections precipitate over the polar caps, commonly extending to 

geomagnetic latitudes greater than 60 degrees [Smart and Shea, 1994]. These high-

energy protons, along with collisional secondary electrons, ionize and dissociate 90 

molecular nitrogen and oxygen, resulting in the formation of odd hydrogen (HOx = H + 

OH + HO2) and reactive odd nitrogen (NOx = N + NO + NO2) [e.g., Crutzen et al., 1975; 

Jackman et al., 1980; Solomon et al., 1981]. 

      Enhancements of HOx cause short-lived catalytic ozone destruction in the mesosphere 

and upper stratosphere during an SPE and for a few days following the event [e.g., 95 

Solomon et al., 1981; Jackman et al., 2008; Damiani et al., 2010]. NOx has a short 

lifetime in the upper mesosphere and thermosphere, but the lifetime increases to months 

during polar night in the stratosphere. During winter, when downward transport within 

the isolated polar vortex is strong and photochemistry is limited, NOx produced by SPEs 

in the mesosphere and upper stratosphere can be transported to the middle and lower 100 

stratosphere [Lopez-Puertes et al., 2005; Randall et al., 2005; Jackman et al., 2009; 

Randall et al., 2009]. Loss of O3 from the oxidation of SPE-enhanced NOx mainly results 

in nitric acid (HNO3) and dinitrogen pentoxide (N2O5). These species eventually mix 

with the large pool of total odd nitrogen (NOy = N + NO2 + NO3 + 2N2O5 + HNO3 + 

HO2NO2 + (HONO) + ClONO2 + BrONO2) in the lower stratosphere, a background 105 

reservoir produced primarily by the oxidation of nitrous oxides (N2O) emitted at the 

surface [Vitt and Jackman, 1996]. With the return of sunlight to the polar region, NOx can 

more effectively destroy stratospheric ozone through catalytic reactions. 

     Total odd nitrogen species such as HNO3, HO2NO2, ClONO2, and N2O5 serve as 

precursors to soluble nitrate ions (NO3
-) deposited in snow. Nitrate ions from HNO3, and 110 
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to a less extent HO2NO2, can reach the surface through stratosphere-troposphere 

exchange followed by wet deposition. In the winter polar vortex, HNO3 also condenses to 

form polar stratospheric cloud (PSC) particles, which can gravitationally sediment to the 

troposphere if the particles grow large enough. In addition, heterogeneous reactions of 

N2O5 + H2O and ClONO2 + HCl occur on the surfaces of PSCs to form HNO3, 115 

condensing and sedimenting out of the stratosphere. On the basis of inferences from 

nitrate layers in ice core data, McCracken et al. [2001a] and Shea et al. [2006] suggest 

that the deposition of nitrate to the surface resulting from SPEs occurs 2-6 weeks 

following each event. This contradicts calculations by Legrand et al. [1989] that suggest 

a two-year transport time of enhanced odd nitrogen from the upper stratosphere to lower 120 

stratosphere, a consequence of horizontal diffusion to lower latitudes and vertical diabatic 

recirculation. 

     A viable mechanism for SPE nitrate precursors to progress from the upper atmosphere 

to the surface snow within a 2-6 week timeframe would require: 1) rapid downward 

transport from the upper stratosphere; 2) levels of NOy produced by SPEs high enough to 125 

compete with the background reservoir of NOy in the lower stratosphere; and 3) a 

mechanism for quickly depositing nitrate from the lower stratosphere to the surface. High 

temporal resolution would be necessary to identify these events at the surface, requiring 

ice core sampling techniques such as continuous flow analysis (CFA) [e.g., Sigg et al., 

1994; Roethlisberger et al., 2000; Kepko et al., 2009] or high frequency sampling of 130 

surface snow or ambient air [e.g., Wolff et al., 2008; Weller et al., 2011]. 

    Using daily measurements of surface snow at Summit, Greenland, the investigation 

described in this paper considers much higher resolution nitrate variability than prior ice 
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cores studies, resolving nitrate deposition on timescales that should be able to capture an 

individual SPE. Although there are larger SPE events during meteorological periods of 135 

stronger downward transport, we target the SPE of 9 November 2000 because daily 

surface snow measurements following this event are complete enough to infer alternative 

tropospheric sources of nitrate ion spikes through correlation analysis with sulfate, 

ammonium, sodium, and calcium as discussed in Section 3.1. The 9 November 2000 

event is the sixth largest SPE in the last 50 years with respect to the calculated production 140 

of NOy, four times weaker than the largest event on 19-27 October 1989 [Jackman et al., 

2008]. 

2.2. The Whole Atmosphere Community Climate Model 

     The Whole Atmosphere Community Climate Model (WACCM) is a component of the 145 

Community Earth System Model (CESM) at the National Center for Atmospheric 

Research (NCAR). Model documentation is available at the CESM website 

(www2.cesm.ucar.edu). Simulations in this study use version cesm1.0.5 (WACCM4), 

with active atmospheric and land models, prescribed ice, and fixed ocean (specified sea 

surface temperatures). The WACCM atmospheric component of the model combines the 150 

Community Atmosphere Model (CAM5), the Thermosphere-Ionosphere-Mesosphere-

Electrodynamics General Circulation Model (TIME-GCM), and the Model for OZone 

and Related chemical Tracers (MOZART) to simulate dynamics and chemistry from the 

surface to the lower thermosphere [Garcia et al., 2007; Kinnison et al., 2007; Emmons et 

al., 2010; Marsh et al., 2013; Neale et al., 2013]. 155 



 	

     The chemical solver and reaction rates are based on MOZART chemistry [Kinnison et 

al., 2007; Emmons et al., 2010]. Observed solar spectral irradiance and geomagnetic 

activity force the heating and photolysis rates [Marsh et al., 2007]. The chemical 

mechanism includes 59 species and involves reactions of Ox, NOx, HOx, ClOx, and BrOx 

chemical families as well as methane and carbon monoxide oxidation. The mechanism 160 

contains heterogeneous reactions on stratospheric aerosols, including liquid sulfate 

aerosols along with nitric acid trihydrate (NAT), supercooled ternary solution (STS), and 

water ice associated with PSCs [Kinnison et al., 2007]. Concentrations of longer-lived 

greenhouse gases and halogen species are specified from observations [Garcia et al., 

2007]. Surface emissions are represented by flux boundary conditions associated with the 165 

most recently available compilation supported by WACCM and described by Lamarque

et al. [2012]: anthropogenic emissions from POET (Precursors of Ozone and their Effects 

on the Troposphere) [Granier et al., 2005] and REAS (Regional Emissions inventory in 

ASia); monthly biomass burning emissions from GFED-v2 (Global Fire Emissions 

Database) [van der Werf et al., 2006]; and biogenic, soil, ocean, and volcanic emissions 170 

from POET and GEIA (the Global Emissions Inventory Activity). These inventories 

correspond to emissions used in the Coupled Model Intercomparison Project phase 5 

(CMIP5) [Taylor et al., 2012]. 

     The WACCM simulations used here have a resolution of 1.9º latitude, 2.5º longitude, 

and 88 vertical layers extending from the surface to approximately 140 km. The model 175 

chemistry applies 30-minute time steps. We use the specified dynamics version of 

WACCM (SD-WACCM) in which meteorology is forced by NASA's Modern Era 

Retrospective analysis for Research Applications (MERRA) fields [Rienecker et al., 



 


2011]. WACCM achieves this forcing by relaxing horizontal winds and temperatures to 

MERRA fields from 0 to 40 km. The model is free running above 50 km, with a linear 180 

reduction of forcing between 40 and 50 km. 

      WACCM modelers have participated in a series of intercomparisons and validation 

studies, most recently CMIP5 [Taylor et al., 2012]. Funke et al. [2011] include WACCM 

in an intercomparison focused on the SPEs of October 2003, validating results with 

observations from the Michelson Interferometer for Passive Atmospheric Sounding 185 

(MIPAS) on Envisat. The authors show a general agreement between model calculations 

and measurements, including O3 loss within 5% and model NOy enhancement within 

30% at 1 hPa. 

     Previous WACCM simulations studying SPEs include Jackman et al. [2008; 2009; 

2011] and Funke et al. [2011]. The WACCM simulations presented in this paper are 190 

motivated in part by Figure 6 from Jackman et al. [2009], showing a tongue of enhanced 

NOy and decreased O3 extending into the northern polar lower stratosphere following the 

9 November 2000 SPE. The present simulations differ by: 1) forcing the model with 

MERRA re-analysis meteorological fields specific to the 2000-2001 time period; 2) using 

a more recent version of WACCM with improvements including parameterizations for 195 

wave interactions resulting from turbulent mountain stress; and 3) using a higher 

horizontal resolution to better resolve transport (1.9° latitude by 2.5° longitude in contrast 

to the Jackman et al. [2009] 4° latitude by 5° longitude). 

 

2.3. Modeling the November 9, 2000 Solar Proton Event 200 
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     Following a coronal mass ejection on 8 November 2000 (23:26 UTC), the GOES8 

satellite measured a solar proton event (SPE) beginning on 8 November (23:50 UTC) and 

reaching a maximum on 9 November (15:55 UTC). A smaller event occurred in late 

November, peaking on 26 November (20:30 UTC). The proton flux for energies greater 

than 10 MeV reach a maximum of 14,800 pfu (pfu = proton flux units = 205 

particles·sr -1·cm-2·s-1) for the 9 November event and 940 pfu for the 26 November event 

(http://www.swpc.noaa.gov). 

     The WACCM model assumes a uniform distribution of proton flux at geomagnetic 

latitudes greater than 60 degrees, using calculations of daily-averaged ion pair production 

rates as a function of pressure based on GOES8 proton flux measurements [Jackman et 210 

al., 1980; 2005; 2008]. WACCM includes HOx production rates as a function of altitude 

and ion pairs using a table from Jackman et al. [2005] based on the dissociation of O2 

followed by water cluster ion formation and neutralization described by Solomon et al. 

[1981]. NOx formation results from the ionization and dissociation of N2 and O2, 

producing ~1.25 N per ion pair [Porter et al., 1976] partitioned into 45% ground state 215 

N(4S) and 55% excited state N(2D). The excited state N(2D) determines net NOx 

production [Rusch et al., 1981]. Tabulated calculations and detailed descriptions of NOx 

and HOx production rates by SPEs are available at the SPARC/SOLARIS website 

(http://sparcsolaris.geomar.de/input_data.php). 

      WACCM calculations of gas phase chemical species include loss rates for dry 220 

deposition, wet deposition, and heterogeneous reactions on stratospheric aerosols. Dry 

deposition follows a resistance approach, dependent on land cover type and surface 

roughness. WACCM calculates the dry deposition flux for a given species as the product 
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of deposition velocities (varying by time and horizontal grid location) and concentrations 

at a reference height (~10 m) above the surface. 225 

      There are two wet deposition schemes available for WACCM: the traditional 

MOZART scheme [Rasch et al., 1997; Horowitz et al., 2003] and a more extensive 

scheme detailed by Neu and Prather [2012]. The MOZART scheme addresses convective 

updrafts, in-cloud nucleation scavenging (rainout), below-cloud impaction scavenging 

(washout), and evaporation in clear ambient air. Precipitation rates, cloud water content, 230 

and cloud fractions are taken from meteorological data fields, and effective Henry's law 

coefficients are prescribed. The Neu and Prather [2011] wet deposition scheme includes 

a more resolved sub-grid scale treatment of cloud overlap and a burial method for the 

uptake of soluble gases on ice, resulting in slower uptake of HNO3 by ice and snow. This 

study uses the MOZART scheme in an effort to provide an upper limit for wet deposition 235 

of HNO3, consistent with the search for the maximum potential deposition of nitrate 

following SPEs. 

      WACCM treats wet deposition as a first order gas-phase loss process at the end of 

each time step. The model does not explicitly account for the accumulation of condensed 

species within cloud droplets or aqueous chemistry, nor does it archive soluble ions 240 

deposited to the surface. The results presented in this paper estimate the variability in 

nitrate deposition by integrating gas-phase loss through wet deposition over the total 

atmospheric column and then dividing by precipitation amounts, filtering model output 

when precipitation values are extremely low to prevent anomalous spikes. These 

calculations are expected to overestimate the magnitude of nitrate ions deposited to the 245 
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snow but allow a comparison of modeled variability in nitrate deposition with observed 

variability in surface snow measurements. 

     WACCM also calculates the uptake of HNO3 by stratospheric aerosols and the 

gravitational settling of stratospheric cloud particles. Combining the sedimentation of 

condensed phase HNO3 with the heterogeneous conversion of N2O5 to HNO3 on polar 250 

stratospheric clouds allows WACCM to calculate the contribution of nitrate to the 

troposphere through irreversible denitrification of the stratosphere. 

2.4. Observations of Nitrate in Surface Snow at Summit, Greenland 

     Summit Station, originally the site of the Greenland Ice Sheet Project 2 (GISP2), is 255 

located in the middle of the Greenland ice sheet, approximately 3200 meters above sea 

level at 72º 34' N latitude and 38º 29' W longitude. Atmospheric measurements have been 

made at the site since 1989, with a variety of intensive measurements throughout the 

1980s and 1990s, culminating in a full suite of continuous measurements beginning in 

2003 as part of the Arctic Observing Network (http://www.geosummit.org). 260 

     Year-round daily measurements of soluble ion content in surface snow are available 

during 1997-1998 and from August 2000 to August 2002 [Dibb et al., 2007]. Vertical 

profiles from monthly one-meter snow pits accompany these measurements. Sampled 

ions include sodium (Na+), ammonium (NH4
+), potassium (K+), magnesium (Mg2+), 

calcium (Ca2+), chloride (Cl-), nitrate (NO3
-), and sulfate (SO4

2-). Sampling procedures, 265 

transport, and ion chromatography techniques and uncertainties are described in detail by 

Dibb et al. [2007]. Briefly, snow was sampled daily from an areas upwind of Summit 

camp to avoid contamination from local sources. Samples from the uppermost 
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stratigraphic layer were collected in groups of three adjacent replicates, with companion 

blanks generated every nine samples. Samples remained at -20 C until analysis, melted in 270 

small batches and immediately analyzed by ion chromatography. 

     The use of chemical profiles to infer historical atmospheric conditions such as the 

influence of solar proton events depends on preservation within the snowpack. The 

analysis of surface snow and snow pit data reveals that levels of most ions are 

preserved (at approximately 80%) in layers within the snow pits [Dibb et al., 2007]. The 275 

exception is nitrate, where post-depositional processes may significantly modify nitrate 

ion concentrations [Dibb et al., 2007]. Evidence of post-depositional modifications have 

been observed at both poles [e.g., Dibb and Whitlow, 1996; Dibb and Jaffrezo, 1997; 

Rothlisberger et al., 2002], with significant differences expected among sites as a result 

of the physical and chemical environments. These modifications involve snow-air 280 

exchange attributed to photolysis, sublimation and condensation associated with the 

growth of snow grains, and the uptake and release of volatile species such as nitric acid 

[e.g. Legrand et al., 1996; Sturm and Benson, 1997; Honrath et al., 1999; Dibb et al., 

2002; Grannas et al., 2007]. Traversi et al. [2012] suggest that ideal conditions for 

preserving nitrate in firn with respect to post-depositional effects involve accumulation 285 

rates above 50 mm water equivalent per year. While sites in Greenland such as Summit 

are well above this threshold, many Antarctic plateau sites fall below the limit, including 

Vostok, and Dome C [Traversi et al., 2012 and references therein]. In addition, long 

periods between snowfalls may allow significant post-depositional processing near the 

surface. 290 
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     Post-depositional modifications also depend on the chemical composition of air near 

the surface, the composition of the snow (particularly with regard to acidity), and the 

altitude and temperature of the site [e.g., Rothlisberger et al., 2000; Burkhart et al., 

2004]. Recent measurements of oxygen isotopes of nitrate at Summit suggest that post-

depositional photolysis of nitrate in surface snow is limited (~2% in summer) [Fibiger et 295 

al., 2013]. Furthermore, in the absence of solar radiation, we would not expect post-

depositional loss process involving photochemistry and thermal desorption to extensively 

reduce concentrations during the polar winter. However, modifications of nitrate ion 

levels may result from the migration, diffusion, and chemistry associated with the 

physical evolution of the snowpack, particularly with regard to the metamorphism and 300 

compaction of grains [Bartels-Rausch et al., 2012]. 

    The seasonal cycles of long-lived chemical tracers, greenhouse gases, and non-

methane hydrocarbons demonstrate that this site is representative of well-mixed, remote 

Arctic air, with most organic compounds in their final stage of oxidation [Dibb et al., 

2007]. Kahl et al. [1997] show westerly flow dominating at Summit, with wintertime 305 

trajectories at 500 hPa identifying long-range transport from Asia or Europe and 

trajectories at 700 hPa suggesting less rapid flow from North America. 

    Summit receives ~65 cm of snow (~24 cm water equivalence) per year, with snow 

accumulation reaching a maximum in spring and a minimum in winter 

[Dibb and Fahnestock, 2004]. Periods of fresh snow are relatively infrequent during the 310 

2000-2001 winter: six events in November 2000 (0.72 cm water equivalence); two events 

in December 2000 (0.29 cm water equivalence); and two events in January 2001 (0.56 cm 

water equivalence). In addition to fresh snow events, field notes indicate frequent periods 
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of thick fog and rime, ice-crystals and diamond dust as well as high winds and blowing 

snow strong enough to obscure visibility. 315 

 

3. Results and Discussion 

3.1. Correlations Between Nitrate Ions and Other Ions in Surface Snow at Summit 

     Concurrent measurements of nitrate (NO3
-) with other ions such as sulfate (SO4

2-), 

calcium (Ca2+), sodium (Na+), and ammonium (NH4
+) provide a means for attributing 320 

nitrate spikes in snow to tropospheric sources, either by direct association with industrial 

pollution and biomass burning plumes from Europe and North America or from increased 

nitrate deposition involving particulates such as sea salt and dust. Mayewski et al. [1990] 

credit a rising trend in both NO3
- and SO4

2- in Greenland to industrial continental 

pollution. Anthropogenic pollution not only is characterized by high levels of HNO3 but 325 

also is the dominant source of sulfate in comparison to sea salt, dust, volcanoes, and 

biogenic emissions. Chemical signatures of continental biomass burning include elevated 

levels of NH4
+ and formate in Greenland ice, with concurrent enhancements of NO3

- 

present in some events and absent in others [e.g., Legrand et al., 1992; Whitlow et al., 

1994; Legrand and de Angelis, 1996; and Savarino and Legrand, 1998]. Dibb et al. 330 

[1996] and Dibb and Jafrezzo [1997] confirm biomass burning in Northern Canada as a 

source of enhanced NH4
+, carboxylic acids, and nitrate at Summit using back-trajectories 

in conjunction with with atmospheric and snow measurements. 

     Observations of atmospheric aerosols at Summit near ground level (1.5 m) show 

minimal concentrations of particulate nitrate, often below the detection limit of 335 

instruments, suggesting that the majority of atmospheric nitrate in snow originates from 
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gas phase HNO3 [Dibb et al., 1994; Dibb et al., 1998]. Contemporaneous measurements 

of gaseous HNO3, atmospheric aerosol nitrate, and nitrate ions in snow during the 

summer of 1993 show mean HNO3 concentrations of 0.9±0.6 nmol/m3 an order of 

magnitude larger than mean aerosol nitrate concentrations 0.06±0.6 nmol/m3 [Dibb et al, 340 

1994]. N2O5 could potentially be an additional source of nitrate ions in snow, particularly 

in winter, when N2O5 accumulates in the absence of photochemistry and subsequently 

reacts heterogeneously with the snow [Huff et al., 2011]. 

     Wolff et al. [2008] attribute correlations between NO3
- and Na+ at Halley, Antarctica 

to increased rates of conversion of gaseous to aerosol nitrate on coarse sea salt aerosols or 345 

salty snow surfaces. The authors propose the potential for similar correlations involving 

NH4
+ and Ca2+ at inland polar sites like Summit. Dibb et al. [2007] identify a spring 

maximum in crustal dust (Ca2+) at Summit, most likely long-range transport originating 

from Asia [Dibb et al., 2003] as well as a summer peak in NH+ [Dibb et al., 2007], 

characteristic of biomass burning from North America and Europe. Wolff et al. [2008] 350 

recommend that future analyses of nitrate ions in snow and ice use ion correlations to 

screen for known tropospheric sources before searching the residual nitrate data for 

potential SPEs. This study adopts such a technique, identifying tropospheric sources 

through ion correlations at Summit from 2000-2002 followed by WACCM model 

simulations to investigate nitrate spikes not readily attributable to tropospheric sources. 355 

     Figure 2 presents time series plots of NO3
- paired with NH4

+, Na+, Ca2+, and SO4
2- at 

Summit along with solar proton fluxes from GOES8. Visual examination shows that 

nitrate spikes on 21 August 2000, 5 September 2000, 16 June 2001, and 4 July 2002 

correlate with NH4
+, a tracer of biomass burning. High levels of the anthropogenic 



 ��

pollutant tracer SO4
2- accompany nitrate spikes on 25-30 November 2000, 26 June 2001, 360 

and 19 February 2002. Levels of Na+ associated with sea salt are enhanced along with 

NO3
- on 12 January 2002 and 19 February 2002. This leaves four nitrate ion spikes that 

are not readily attributable to tropospheric sources: 22-24 November 2000, 13 December 

2000, 25 January 2001, and 22 October 2001. The GOES8 proton fluxes indicate SPEs 

on 9 Nov 2000, 24 Sep 2001, 4 Nov 2001, and 22 Nov 2001. This study uses the 365 

WACCM model to analyze the three candidate nitrate spikes that occur during polar 

winter (22-24 November 2000, 13 December 2000, 25 January 2001), specifically 

searching for a potential mechanism to explain how a nitrate signal from the 9 November 

2000 SPE might impulsively arrive at the surface through chemistry, transport, and 

deposition processes within the winter polar vortex. 370 

 

3.2. Modeling the Impact of the November 9 SPE on HOx, NOx, and O3  

     Comparing WACCM simulations with and without SPEs isolates the impact of solar 

protons on upper atmospheric processes and identifies potential scenarios leading to 

enhanced nitrate deposition. The model is initially run from January through October to 375 

allow chemical species to reach equilibrium throughout the atmosphere, with solar 

protons (e.g., the 14 July 2000 "Bastille Day" solar proton event) included during this 

“spin-up” period. At the start of November, the solar proton flux is allowed to continue in 

a “with SPEs” simulation but is set to zero in a “no SPEs” simulation, thereby more 

effectively highlighting perturbations specific to the 9 November SPE. 380 

     Figure 3 shows the time evolution of the vertical structure of modeled HOx, NOx, and 

O3 (in mole ratios) during November. Top plots show WACCM simulations with SPEs. 
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Middle plots show WACCM simulations without SPEs. Bottom plots show the SPE 

enhancements of HOx and NOx and the SPE reduction of O3. These contour plots 

represent average profiles calculated within the meandering polar vortex, the region most 385 

likely associated with strong polar winter descent. Potential temperature (�) serves as the 

vertical coordinate on the left axis, while the right axis indicates the approximate 

geopotential height (Z). The boundary of the polar vortex is objectively determined by 

identifying grid points within the stratosphere where scaled potential vorticity (sPV) 

calculated on isentropic surfaces exceeds 1.4x10-4 s-1 [Dunkerton and Delisi, 1986; 390 

Brakebusch et al., 2013]. Scaled potential vorticity retains the conservation properties of 

Ertel's potential vorticity on isentropic surfaces. However, by normalizing with respect to 

U.S. Standard Atmosphere [COESA, 1976], sPV removes vertical disparities in potential 

vorticity caused by the exponential increase of potential temperature with decreasing 

pressure. The vortex is assumed to remain in a constant location above 2500 K (~55 km), 395 

as the sPV method no longer adequately delineates the vortex edge as a result of the 

temperature profile above the stratopause. 

     Figure 3 highlights the significant impact of the 9 November SPE event on the 

chemistry of the Arctic mesosphere and stratosphere. Short-lived enhancements up to 100 

ppbv HOx occur above 80 km in the mesosphere, with enhancements of 0.1 to 1 400 

ppbv extending throughout the stratosphere during the days following the 9 November 

SPE (Figure 3a). SPE production of NOx peaks around 50 ppbv in the mesosphere, 

exceeding 30 ppbv throughout the upper stratosphere during the days following the event 

(Figure 3b). The NOx enhancements slowly descend within the stratosphere throughout 

the month, maintaining levels an order of magnitude above background. Losses of O3 up 405 
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to 800 ppbv occur above 70 km immediately following the 9 November SPE (Figure 3c). 

A 30 to 40% depletion of O3 (> 100 ppbv) occurs throughout the stratosphere, most likely 

associated with the short-lived enhancement of HOx. O3 reduction continues in the 

stratosphere throughout the rest of November, consistent with the descent of SPE-

enhanced NOx. The smaller SPE at the end of November is also evident in the plots for 410 

all three species. 

      Figure 4 presents the vortex-averaged SPE enhancement of NOx and reduction of O3 

from November through March. NOx enhancements of 10 to 40 ppbv (10 to 20 times 

background levels) descend from the upper stratosphere to the middle stratosphere 

throughout November and December at a rate of ~10 km/month. By January, increases of 415 

3 to 5 ppbv (2 to 3 times background levels) persist from 30 to 35 km, with remnant 

enhancements continuing into spring. 

      Figure 4 supports the supposition that the enhancement of NOx during the months 

following the 9 November SPE drives longer-lived destruction of O3 in the stratosphere. 

The reduction of O3 in the stratosphere follows the descent of SPE-enhanced NOx, 420 

reaching losses of 500 ppbv during December and early January. Reductions of ozone 

remain at 400 to 500 ppbv (5 to 10%) from 25 to 30 km until spring. Although most of 

the ozone reduction occurs above the stratospheric ozone layer, where number densities 

peak from 15 to 20 km, ozone losses could nonetheless reduce oxidation rates in the 

middle to lower stratosphere and impact the chemistry, dynamics, and radiative 425 

properties of this region. 

     Not surprisingly, the behavior of HOx, NOx, and O3 following the 9 November 2000 

SPE in these simulations is similar to the Jackman et al., [2009] WACCM results. 
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Jackman et al., [2009] show an increase in upper stratospheric NOy (mostly NOx), 

exceeding 1000% for several days after the Nov 9 SPE, followed by the prolonged 430 

downward transport of enhanced NOy during the weeks and months following the event, 

exceeding 20% at 30 km during January and February. Model calculations of HOx and O3 

presented in this paper are also consistent with Jackman et al. [2008; 2009]. 

     Figure 5 shows a comparison of NO2 from WACCM with POAM III (Polar Ozone 

and Aerosol Measurement) satellite measurements within the Arctic vortex. Descriptions 435 

of the POAM III data along with methods for determining the edge of the polar vortex for 

Figure 5a are provided in Randall et al. [2002], Harvey et al. [2002], and Randall et al. 

[2007]. Scaled potential vorticity (sPV) is used to identify the location of the vortex for 

the WACCM results, consistent with the analysis throughout this paper. Magnitudes of 

NO2 simulated by WACCM are similar to observations by POAM III, with background 440 

levels 1 to 3 ppbv between 30 and 40 km during November, increasing substantially in 

early February. The WACCM simulations do a better job capturing levels of NO2 during 

December and January when including SPEs. Favorable comparisons for NOx and O3 

have also been made among WACCM simulations and available satellite measurements 

for more recent SPEs, including MIPAS observations of the October 2003 “Halloween” 445 

SPEs [Jackman et al., 2008; Jackman et al., 2009; Funke et al., 2011] and MIPAS, MLS, 

and ACE-FTS observations for the January 2005 SPE [Jackman et al., 2011]. 

     Simulations using global models other than WACCM to study SPEs similar in 

magnitude to this study also show enhancements of NOx and reductions of O3 in the 

stratosphere during the months following each event [e.g., Semeniuk et al., 2005; 450 

Paivarinta et al., 2013]. Calisto et al. [2012] use the SOCOL (ECHAM4+MEZON) 
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model to study how a hypothetical extremely large SPE (the August 1972 SPE scaled to 

fluences associated with the 1859 Carrington Event) would impact the atmosphere if it 

occurred during a contemporary solar maximum. The short-term enhancements of HOx 

(10 ppbv) and NOx (200 ppbv) exceed the 9 November SPE WACCM simulations. 455 

However, longer-term increases in NOx (10%) and decreases in O3 (20-40%) in the 

stratosphere are comparable to the 9 November SPE WACCM simulations, likely 

attributable to solar radiation variations between fall and winter. While the SOCOL 

simulation of the extreme SPE results in significant depletion of total column O3 (20 

DU), the WACCM simulations of the 9 November SPE show a vortex-averaged decrease 460 

reaching only 5 DU by late January, with reductions up to 10 DU occurring sporadically 

in the center of the vortex. 

 

3.3. Modeled Conversion of NOx to NOy and the Downward Transport of NOy  

     As NOx descends within the stratosphere, oxidation reactions convert NOx into other 465 

NOy species, primarily through the following pathways: 

 

NO2 + OH + (M) � HNO3 

NO2 + NO3 + (M) � N2O5  

(where NO3 is produced from NO2 reactions with O and O3) 470 

 

These products of NOx oxidation are of particular interest because of their role in nitrate 

ion deposition. Background NOy densities peak in the lower stratosphere, where a 

reservoir of HNO3 accumulates from the oxidation of nitrous oxide (N2O) emitted at the 
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surface. The WACCM simulations presented in this paper strive to answer whether or not 475 

the NOy enhancements resulting from the oxidation of SPE NOx can descend and persist 

within this background pool of NOy in the lower stratosphere at levels high enough to be 

detected at the surface. Note that WACCM does not include reactions involving hydrated 

cluster ions, which have also been implicated in the production of HNO3  at altitudes over 

35 km [Kawa et al., 1995; Verronen et al., 2008; Kvissel et al., 2012]. 480 

     Figure 6 presents vortex-averaged NOy within the stratosphere from November 

through March. Figure 6a shows NOy in simulations without SPEs, depicting the 

subsidence of air within the polar vortex during winter. Figure 6b shows the 

corresponding downward transport of SPE NOy enhancements within the stratosphere. 

By late January there is a thin layer (~ 5 km) of 5 to10 ppbv SPE-enhanced NOy around 485 

30 km. SPE enhancements continue through March, remaining at altitudes well above 20 

km. Figure 6a clearly identifies a background pool of NOy in the lower stratosphere (10 

to 15 ppbv), an order of magnitude larger than typical values in the middle stratosphere (1 

to 4 ppbv) and troposphere (less than 1 ppbv). While downward transport is best studied 

using mole ratios or mixing ratios (measures of composition that are independent of 490 

density), it is nonetheless important to draw attention to the exponential decrease in 

atmospheric density with height. A background level of 15 ppbv NOy at 50 hPa (~20 km) 

contains a factor of 10 more molecules than 15 ppbv of SPE-enhanced NOy at 5 hPa (~35 

km). Figure 6c emphasizes that NOy background number densities peak below 20 km. 

The challenge remains explaining how a thin SPE-produced layer averaging 5 to10 ppbv 495 

NOy at 30 km might be detected at the surface given the thick background pool of 10 

to15 ppbv NOy in the thermally stable lower stratosphere. 
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    As a means of estimating the maximum potential for enhanced deposition of nitrogen 

at the surface as a result of the 9 November SPE, Figure 6d shows vortex-averaged NOy 

total column densities from model simulations with SPEs (blue) and without SPEs (red). 500 

Vertical column densities are integrated over each model surface grid, and vortex 

averages are calculated using latitudes and longitudes where sPV values on the 500 K 

isentropic surface (~20 km) are greater than 1.4x10-4 s-1. Figure 6e provides similar 

model results for column densities integrated above 30 km. A large relative increase in 

column densities above 30 km reflects significant SPE enhancement of NOy. However, 505 

the absolute magnitude of the stratospheric SPE-induced NOy enhancement is small 

compared to the total column density of NOy. There is a general increase in total column 

density of NOy throughout winter. However, vortex-averaged SPE enhancements of total 

column NOy remain below 5%, with enhancements never exceeding 20% at any location 

within the vortex (not shown). In contrast, nitrate peaks in snow and ice show 510 

enhancements 4 to 5 times background levels, significantly greater than the maximum 

potential for SPE enhancement suggested by column densities of NOy. 

     The fact that the increase in NOy in the atmospheric column is on average less than 

5% (and a maximum of 20% locally) challenges the theory of SPEs being responsible for 

spurious peaks in nitrate deposited at the surface. However, it does not rule out the 515 

possibility of longer-term trends in nitrate resulting from solar activity. For example, 

although Palmer et al. [2001] do not find a correlation between nitrate spikes and 

individual solar events in ice cores sampled at Law Dome, Antarctica, a statistical 

analysis reveals an 11% enhancement of nitrate during the 3 to 14 months following solar 

events, consistent with the total column nitrate enhancement calculated in this study. 520 
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3.4. Modeled Partitioning of NOy 

     An analysis of individual NOy species within WACCM helps to identify precursors to 

nitrate ions deposited to the surface. The majority of NOy above 40 km is in the form of 

NOx, while HNO3 is the principal NOy species below 30 km. Dinitrogen pentoxide 525 

(N2O5) becomes significant in the 30 to 40 km layer. HO2NO2 is primarily of importance 

in the troposphere. Other NOy species such as chlorine nitrate (ClONO2), bromine nitrate 

(BrONO2), and nitrate radical (NO3) are small in comparison. 

     Figure 7a-d presents vortex-averaged WACCM simulation results of HNO3 including:  

background levels from WACCM simulations without SPEs, enhancements from SPEs, 530 

SPE enhancements of column densities integrated over the total atmospheric column, and 

SPE enhancements of column densities above 30 km. Throughout late December and 

most of January, SPE enhancements of HNO3 do not exceed 1 ppbv, levels much lower 

than the 10 ppbv background pool of HNO3 at 20 km. The largest SPE enhancements of 

HNO3 occur from 20 to 30 km during late January through early March, peaking under 3 535 

ppbv and remaining small in comparison to background values. Vortex-averaged total 

column densities of HNO3  show little change as a result of SPEs, and local enhancements 

only occasionally reach 2 to 3% within the polar vortex (not shown). The most significant 

SPE enhancements of HNO3 occur above 30 km but have little impact on total column 

density. 540 

     The model calculates an increase in N2O5 throughout the stratosphere as a result of 

SPEs (Figures 7e-h), with most of the enhancement occurring from 30 to 40 km. In 

contrast to HNO3, the model shows significant enhancements (up to 40%) of vortex-
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averaged N2O5 total column density during the months after the 9 November event. Local 

N2O5 total column densities are enhanced by over 100% in the center of the vortex during 545 

late December and January (not shown). N2O5 makes up only 5% of total column NOy. In 

order for total column N2O5 enhancements to explain nitrate spikes at the surface, there 

would need to be a mechanism involving preferential deposition of N2O5 over HNO3. To 

the authors' knowledge, no such mechanism has been suggested in the literature. In 

addition, Jackman et al. [2008] and Funke et al., [2011] emphasize that WACCM SPE-550 

enhanced N2O5 is larger than levels from satellite measurements, hypothesizing the need 

to include water cluster ion reactions in WACCM to convert NO3 to HNO3 in order to 

simulate lower N2O5 values [e.g., Solomon et al., 1981; Lopez-Puertes et al., 2005]. This 

additional HNO3, however, would not significantly impact the variability of nitrate at the 

surface, since N2O5 comprises such as small percentage of total column NOy. 555 

 

3.5. Modeled Deposition of NOy

     Several mechanisms allow nitrogen in the atmosphere to deposit as nitrate ions to 

surface snow. Dry deposition involves gas phase and particulate nitrogen species sticking 

to the surface snow in the absence of precipitation. Wet deposition removes nitrate as 560 

HNO3 (and to a lesser extent HO2NO2) is taken up by falling snow by means of in-cloud 

nucleation scavenging and below-cloud impaction scavenging. Nitrate deposition can 

also result from the uptake of HNO3 by polar stratospheric clouds (PSCs), heterogeneous 

conversion of N2O5 to HNO3 on PSCs, and subsequent gravitational settling of cloud 

particles to the troposphere. 565 
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     Although background levels of NOy are large in the lower stratosphere, thermal 

stability inhibits mixing across the tropopause. In the absence of stratospheric intrusions, 

denitrification by gravitational settling of PSC particles is the most likely mechanism for 

upper atmospheric nitrate to reach the troposphere. WACCM relies on an equilibrium 

approach to calculate the amount of HNO3 condensed on polar stratospheric clouds, 570 

which in turn determines the radii and settling velocities of these aerosols (see supporting 

information in Kinnison et al. [2007]). Although heterogeneous reactions in WACCM 

occur on PSCs composed of supercooled ternary solutions (STS), nitric acid trihiydrate 

(NAT), and water-ice [Kinnison et al, 2007; Lamarque et al., 2012; Wegner et al., 2013], 

condensed nitrogen is limited to STS and NAT aerosols in WACCM, with gravitational 575 

settling occurring only for NAT particles because of their larger radii. Once settling and 

advection bring condensed HNO3 to the troposphere, it may be removed from the 

modeled atmosphere via wet deposition. 

     Denitrification through cloud sedimentation is not as common in the Arctic as in the 

Antarctic, where temperatures are low enough to allow PSC particles to grow to larger 580 

masses. Although PSCs and denitrification have been observed in the Arctic during years 

when the polar vortex is strong [e.g, Waibel et al., 1999; Kondo et al., 2000; Santee et al., 

2000; Fahey et al., 2001; Popp et al., 2001], the winter of 2000-2001 exhibits neither a 

consistently strong vortex nor low temperatures (see Figure 1 from Manney et al. [2006]). 

In addition, observations show significant re-nitrification in the Arctic as increasing 585 

temperatures in the lower stratosphere and troposphere cause nitrogen from PSCs to re-

enter the gas phase [Dibb et al., 2006]. 
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     Nonetheless, for completeness, it is useful to consider model-calculated PSCs when 

examining maximum potential nitrate deposition from the stratosphere. WACCM 

calculates the presence of all three types of PSCs over the Arctic during winter 2000-590 

2001, with STS and NAT particles most abundant in mid-January and ice clouds briefly 

present when stratospheric temperatures reach a minimum. Figure 8 presents vortex-

averaged vertical temperatures, vortex-averaged condensed nitrate as NAT particles (the 

most relevant PSC leading to denitrification in WACCM), and condensed nitrate as NAT 

PSCs for 5 January 2001 (a representative day when PSCs are significant). Although 595 

results are given for simulations with SPEs, differences in temperature from simulations 

without SPEs are negligible and can be attributed to computational noise. WACCM 

temperatures drop below 200 K during January, reaching a minimum of 194 K at 20 km. 

     Condensed NAT in the form of PSCs peaks above 15 km during January, contributing 

50% of total column HNO3 on 5 January 2001. However, NAT radii are small (median 600 

radii less than 1.5 microns) and the modeled flux of nitrate never extends below 17 km, 

as temperatures exceed 200 K and condensed nitrate ions re-enter the gas phase before 

reaching the troposphere. The impact of solar proton events on simulated vortex-averaged 

total column condensed NAT as PSCs is less than 0.2%, with local maximum 

enhancements of 1 to 3%. The limited impact of SPEs on nitrate in the form of NAT 605 

PSCs is consistent with the limited SPE enhancement of total HNO3 presented in Figure 

7. As a comparison to Antarctic simulations where temperatures are lower, NAT and ice 

PSCs are prevalent, and stratospheric denitrification has been observed to be significant, 

Howeverm Jackman et al. [1990] calculate only a 10.6% maximum SPE enhancement of 

nitrate deposition following the August 1972 SPE event over Antarctica. In summary, it 610 
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is unlikely that SPE-enhanced denitrification could account for the 4 to 5 fold nitrate 

spikes observed in Greenland surface snow. 

    Enhanced nitrate from the lower stratosphere descends into the troposphere not only 

through the gravitational settling of PSCs but also from dynamics associated with 

stratosphere-troposphere exchange. Given the minimal SPE enhancement of NOy in the 615 

lower stratosphere, downward transport of SPE-enhanced NOy through isolated 

tropopause folds and stratospheric intrusions could still not explain the magnitude of 

observed nitrate ion spikes. 

     In spite of WACCM’s inability to calculate enhancements of NOy from the 9 

November 2000 SPE large enough to explain surface spikes in nitrate ions, it is 620 

nonetheless worthwhile to examine how closely WACCM’s calculations of nitrate 

deposition resemble observations. Summertime estimates of the NO3
- inventory presented 

by Bergin et al. [1995] attribute 93% of deposition to snow, 6% to fog and 1% to dry 

deposition. The strong stability of the wintertime surface layer would suggest that dry 

deposition plays an even less significant role during the time period considered in this 625 

study. 

     WACCM treats wet deposition in the troposphere as a first order loss rate from the gas 

phase, with precipitation rates and cloud cover derived from MERRA meteorological 

fields. During each time step, WACCM calculates how much of a given gas will be 

incorporated into aerosols within each grid box and removes this amount from the grid 630 

box concentration that is passed to the next time step. While re-evaporation and 

desorption are included within a given time step, WACCM does not archive and 

propagate the soluble ion species nor account for subsequent aqueous reactions. The 
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following analysis assumes that all loss from the gas phase in the tropospheric grid 

column ends up in precipitated water at the end of each half-hour time step. This analysis 635 

estimates the potential enhancement of nitrate at the surface by wet deposition within the 

entire vertical tropospheric column, most likely an overestimate especially when 

precipitation levels are minimal. 

     Figure 9 shows estimates for nitrate deposition resulting from the wet deposition of 

HNO3 in WACCM directly over Summit both with and without SPEs. The method of 640 

calculating modeled wet deposition instantaneously from the entire atmospheric column 

is useful for determining the maximum potential deposition of nitrate but will tend to 

over-estimates nitrate deposition, as is apparent in the different scales on the left and right 

vertical axes. This variation in magnitude is confounded by a coarse grid model 

resolution that is unable to represent the spatial variability caused by blowing or drifting 645 

snow, local accumulation and ablation, or sporadic fog and rime at the surface. Instead, 

our interest lies in identifying whether or not the model can capture the relative 

variability associated with the measured nitrate ions. Indeed, the model does capture 

relative peaks in nitrate on 23 November, 14 December, and 24 January corresponding to 

the nitrate ion spikes of interest in this study observed in surface snow on 22-24 650 

November, 13 December, and 25 January. We present results for simulations with and 

without SPEs for completeness, noting that differences are negligible (never exceeding 

0.2%), once again supporting the conclusion that enhanced nitrate concentrations on 

these days are not related to SPEs. 

655 

3.6. Alternative Explanations for Nitrate Spikes 
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    The WACCM simulations provide evidence that nitrate spikes not readily accounted 

for by soluble ion correlations may nonetheless be related to tropospheric sources. Figure 

10 shows the time evolution of vertical profiles of NOx and HNO3 above Summit from 

November through January. Elevated NOx, with a lifetime on the order of days, indicates 660 

relatively fresh pollution sources. HNO3, a product of NOx oxidation with a lifetime on 

the order of months, is more characteristic of aged plumes. WACCM calculates enhanced 

NOx and HNO3 in the lower troposphere during 22-24 November. High levels of NOx in 

the middle to upper troposphere occur around 14 December. Elevated levels of both NOx 

and HNO3 are present in the lower to middle troposphere on 25 January. 665 

     Figure 11 presents isobaric maps of NOx and NOy from WACCM, identifying polluted 

continental plumes corresponding to vertical enhancements above Summit. Figure 11a 

depicts NOx at 800 hPa (~1.5 km) in the lower troposphere above the marine boundary 

layer one day prior to each nitrate ion spike not attributable to tropospheric sources. 

Figure 11b shows NOy plots at 500 hPa (~3.5 km) on days coinciding with these nitrate 670 

ion spikes. Overlaid vectors indicate the direction and intensity of winds. The WACCM 

simulations show pollution from Europe reaching Summit on 22 November, with a 

polluted plume from North America also evident to the south. The middle panels in 

Figure 11 provide a snapshot of a polluted plume traveling from North America at low 

altitudes on 13 December and aloft over Greenland on 14 December. At altitudes above 5 675 

km (not shown in Figure 11), higher wind speeds steer this plume directly over Summit, 

consistent with elevated levels of NOx in Figure 10. The simulations show transport of 

NOx from Europe on 24 January, with a broad region of enhanced NOy over Greenland 

on 25 January. These model simulations of continental plumes suggest that nitrate spikes 
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in surface snow during these time periods are more likely the result of continental 680 

anthropogenic pollution than SPEs. 

 

4. Conclusions 

    This study screens a two-year data set of daily measurements of ions in surface snow at 

Summit, Greenland from 2000 to 2001 for known tropospheric sources in the search for 685 

evidence of solar proton events in nitrate records. WACCM modeling simulations 

examine transport, chemistry, and deposition during three specific time periods when 

correlations between nitrate and other soluble ions are inconsistent with tropospheric 

sources. The model calculations confirm that solar proton events significantly 

impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and 690 

months after the major 9 November 2000 solar proton event. However, there is never a 

time during the simulation when SPE-enhanced NOy within the atmospheric column is 

large enough to account for the observed nitrate peaks in surface snow. 

     We see no convincing evidence that SPEs are related to impulsive nitrate spikes in 

surface snow at Summit in the winter of 2000 to 2001 but suggest that spikes not readily 695 

accounted for by soluble ion correlations are the result of deposition from polluted 

plumes originating in North America and Europe. This conclusion is particularly 

compelling for recent centuries when anthropogenic emissions are capable of modifying 

atmospheric composition on a global scale.  

     The limited SPE enhancement of total column NOy (5% vortex-averaged and 20% 700 

local maxima) leads us to conclude that impulsive spikes of nitrate ions at the surface are 

unlikely to result from SPEs similar in magnitude to the 9 November 2000 SPE. It would 
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be worthwhile, however, to consider how large an event would be necessary to produce 

nitrate ion levels at the surface discernible from tropospheric sources as well as the 

likelihood of such events given the limits of solar flare energy [Aulanier et al., 2013]. 705 

The association of nitrate ion levels with solar activity on centennial (Gleissberg) and 

millennial timescales also remains of interest [e.g., Motizuki et al., 2009; Traversi et al., 

2012; Ogurtsov and Oinonen, 2014]. 

    A promising alternative to nitrate ions in the search for proxies for historical SPEs 

remains the study of cosmogenic radionuclides such as Carbon-14 (14C) and Beryllium-710 

10 (10Be) [Steinhilber et al., 2012]. Measurements of the cosmogenic radionuclide 

Beryllium-7 (7Be) are available from Summit from 1997-1998, 2000-2002, and 2003-

present [Dibb, 2007]. Although too short-lived to serve as a historical proxy, 

measurements and model comparisons of 7Be following recent SPEs would provide 

insight into vertical transport and deposition processes, paving the way for modeling 715 

studies involving longer-lived cosmogenic radionuclides in the context of solar particle 

events. 

     Although this study could not definitively link surface observations with solar 

energetic protons impacting the upper atmosphere, WACCM results once again point to 

significant impacts of SPEs on the middle and upper atmospheric concentrations of HOx, 720 

NOx, and O3, adding to the growing collection of satellite observations and modeling 

experiments that strive to clarify perturbations in the chemistry, radiation budget, and 

dynamics of the atmosphere resulting from solar variability. The quest for an alternate 

proxy to nitrate for studying solar activity through history remains compelling, 
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particularly with regard to protecting technological infrastructure, understanding climate, 725 

and validating predictive models for space weather. 
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Figures and Figure Captions 
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Figure 1. Schematic diagram of processes involved with nitrate deposition from solar 
energetic protons. 
  1180 
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Figure 2. Daily measurements of ion content (nmol/kg) in surface snow at Summit, 
Greenland from August, 2000 to August, 2002 [Dibb et al., 2007]. Concurrent peaks of 
NO3

- and NH4
+, NO3

- and SO4
2-, NO3

- and Na+, and NO3
- and Ca2

+ are dated by color for 1185 
source identification. Nitrate spikes dated in black represent enhancements not readily 
attributable to tropospheric sources. Average coefficient of variation (CVavg) indicates the 
spread among three simultaneous snow samples used to calculate each daily average, 
representing the major source of error. The lower graph identifies major SPE events in 
the context of daily solar proton fluxes from GOES-8 in protons/(cm2-day-sr) (NOAA at 1190 
http://www.swpc.noaa.gov/). 
 



 �

 
 
Figure 3. Time evolution of the vertical structure for WACCM vortex-averaged a) HOx, 1195 
b) NOx, and c) O3 during the weeks following the 9 Nov 2000 event (mole ratios). The 
vertical scale is represented by potential temperature (�), left, and approximate 
geopotential height (Z), right. Top: with SPEs. Middle: no SPEs. Bottom: HOx 
enhancement (HOx with SPEs – HOx no SPEs), NOx enhancement (NOx with SPEs – 
NOx no SPEs), and O3 reduction (O3 no SPEs – O3 with SPEs). 1200 
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Figure 4. Time evolution of the vortex-averaged a) enhancement of NOx and b) reduction 
O3 from November through March (mole ratios). 
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Figure 5. Comparison of WACCM NO2 with POAM III satellite observations: a) POAM 
III observations, b) WACCM with SPEs, c) WACCM without SPEs, d) WACCM SPE 1210 
enhancements (units in ppbv). WACCM results are linearly interpolated and smoothed 
for clarity during periods when satellite measurements are outside the WACCM polar 
vortex defined according to sPV > 1x10-4 s-1.   
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Figure 6. WACCM vortex-averaged NOy: a) no SPEs (mole ratios), b) SPE 
enhancements (mole ratios), c) no SPEs (number density), d) column densities 
(molecules cm-2) integrated throughout the total atmosphere with SPEs (blue) and no 1220 
SPEs (red), and e) column densities (molecules cm-2) integrate from 30 km to the top of 
the atmosphere with SPEs (blue) and no SPEs (red). 
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Figure 7. Time evolution of WACCM vortex-averages: a) background HNO3 (no SPEs), 
b) SPE enhancement of HNO3 (HNO3 with SPEs – HNO3 no SPEs), c) total column 
density of HNO3, d) column density of HNO3 above 30 km, e) background N2O5 (no 
SPEs), f) SPE enhancement of N2O5 (N2O5 with SPEs – N2O5 without SPEs), g) total 
column density of N2O5, h) column density of N2O5 above 30 km. 1230 



 	

 

Figure 8. WACCM vortex-averaged vertical profiles for a) temperature (K) and b) 
condensed nitrate as nitric acid trihydrate (NAT) PSC particles (mole ratios). c) Vortex-
averaged percent of total column NAT in the form of PSCs with respect to total gas plus 1235 
condensed phase HNO3. Although results are from simulations with SPEs, differences 
with respect to no SPE simulations are negligible.   
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Figure 9. Estimates of nitrate from wet deposition at Summit, Greenland during the 2000-
2001 winter (nmol/kg). The blue and black lines along with the left axes present the 
concentration of nitrogen resulting from the loss of HNO3 in precipitation throughout the 
atmospheric column during the WACCM simulations a) with SPEs and b) without SPEs. 1245 
The red lines and right axes refer to measurements of NO3

- in daily samples of surface 
snow. 
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Figure 10. WACCM time evolution of the vertical profile of a) NOx and b) HNO3 above 
Summit, Greenland. Recall that Summit is located 3.2 km above sea level with surface 
pressures from 660-680 hPa. Peak NOx and HNO3 are circled during time periods where 
surface snow measurements indicate nitrate ion spikes uncorrelated with other ions. 
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Figure 11. Transport of polluted continental plumes simulated by WACCM prior to 
nitrate ion spikes in Summit snow on 22-24 November, 14 December, and 25 January. a) 
NOx at 800 hPa (~1.5 km) on 21 November, 13 December, and 24 January. The white 1260 
region over Greenland indicates surface elevations above 800 hPa. b) NOy at 600 hPa 
(~3.5 km) on 22 November, 14 December, and 25 January. Wind vectors are overlaid on 
both plots to indicate the travel direction of the polluted plumes. 
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