1,622 research outputs found

    Kalata B1 and Kalata B2 Have a Surfactant-Like Activity in Phosphatidylethanolomine-Containing Lipid Membranes

    Full text link
    © 2017 American Chemical Society. Cyclotides are cyclic disulfide-rich peptides that are chemically and thermally stable and possess pharmaceutical and insecticidal properties. The activities reported for cyclotides correlate with their ability to target phosphatidylethanolamine (PE)-phospholipids and disrupt cell membranes. However, the mechanism by which this disruption occurs remains unclear. In the current study we examine the effect of the prototypic cyclotides, kalata B1 (kB1) and kalata B2 (kB2), on tethered lipid bilayer membranes (tBLMs) using swept frequency electrical impedance spectroscopy. We confirmed that kB1 and kB2 bind to bilayers only if they contain PE-phospholipids. We hypothesize that the increase in membrane conduction and capacitance observed upon addition of kB1 or kB2 is unlikely to result from ion channel like pores but is consistent with the formation of lipidic toroidal pores. This hypothesis is supported by the concentration dependence of effects of kB1 and kB2 being suggestive of a critical micelle concentration event rather than a progressive increase in conduction arising from increased channel insertion. Additionally, conduction behavior is readily reversible when the peptide is rinsed from the bilayer. Our results support a mechanism by which kB1 and kB2 bind to and disrupt PE-containing membranes by decreasing the overall membrane critical packing parameter, as would a surfactant, which then opens or increases the size of existing membrane defects. The cyclotides need not participate directly in the conductive pore but might exert their effect indirectly through altering membrane packing constraints and inducing purely lipidic conductive pores

    The CEACAM1 expression is decreased in the liver of severely obese patients with or without diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes is mainly caused by insulin resistance. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is an important candidate for causing insulin resistance.</p> <p>Methods</p> <p>The CEACAM1 expression was evaluated immunohistochemically in the liver tissues of 99 severely obese or non-obese subjects with or without diabetes. The CEACAM1 expression was classified into two categories: a normal expression or a decreased expression.</p> <p>Results</p> <p>The CEACAM1 expression was markedly decreased in the hepatocytes with macrovesicular steatosis. A decreased CEACAM1 expression was noted in 29 (29%) of 99 cases. The incidence of a decreased CEACAM1 expression was significantly higher in high grade fatty liver as well as severe obesity with or without diabetes (p < 0.05). The incidence of a decreased CEACAM1 expression was not different between the diabetic and non-diabetic groups.</p> <p>Conclusions</p> <p>This data supports that a decreased CEACAM1 expression is related to obesity and a fatty liver.</p

    Comparison of Bacterial Diversity within the Coral Reef Sponge, Axinella corrugata, and the Encrusting Coral Erythropodium caribaeorum

    Get PDF
    We compared the Caribbean reef sponge, Axinella corrugata, with the Caribbean reef coral, Erythropodium caribaeorum for differences in their resident microbial communities. This cursory survey of bacterial diversity applied 16S rRNA gene sequences. Over 100 culture-independent sequences were generated from five different Axinella 16S rRNA libraries, and compared with 69 cultured isolates. The cultureindependent 16S rDNA clones displayed a higher diversity of Proteobacteria, including “uncultured” or “unknown” representatives from the Deltaproteobacteria. Arcobacterium, and Cyanobacteria were also found. We have also confirmed that Axinella sponges appeared to host specific microbial symbionts, similar to the previously identified clones termed “OSO” environmental samples. In contrast, seawater samples near Axinella were dominated by Pseudoalteromonas. Adjacent sediment samples yielded clones of Planctomycetacea, Proteobacteria, sulfate-reducing Desulfovibrio spp, and other Deltaproteobacteria. Anaerobe-like 16S rRNA sequences were detected after the oxygen supply to one Axinella sample was deliberately curtailed to assess temporal changes in the microbial community. E. caribaeorum yielded more Betaproteobacteria relative to Axinella 16S libraries, and also included the Gammaproteobacteria genus Spongiobacter. However, Axinella-derived microbes appeared phylogenetically deeper with greater sequence divergences than the coral. Overall this study indicated that marine microbial community diversity can be linked to specific source hosts and habitats

    Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip

    Get PDF
    The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs) held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability. Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-microbial interactions, and where research in this field is directed

    Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: Evidence from a randomized controlled pilot study

    Get PDF
    Background Virtual reality technologies show potential as effective rehabilitation tools following neuro-trauma. In particular, the Elements system, involving customized surface computing and tangible interfaces, produces strong treatment effects for upper-limb and cognitive function following traumatic brain injury. The present study evaluated the efficacy of Elements as a virtual rehabilitation approach for stroke survivors. Methods Twenty-one adults (4294 years old) with sub-acute stroke were randomized to four weeks of Elements virtual rehabilitation (three weekly 3040 min sessions) combined with treatment as usual (conventional occupational and physiotherapy) or to treatment as usual alone. Upper-limb skill (Box and Blocks Test), cognition (Montreal Cognitive Assessment and selected CogState subtests), and everyday participation (Neurobehavioral Functioning Inventory) were examined before and after inpatient training, and one-month later. Results Effect sizes for the experimental group (d = 1.052.51) were larger compared with controls (d = 0.110.86), with Elements training showing statistically greater improvements in motor function of the most affected hand (p = 0.008), and general intellectual status and executive function (p ≤ 0.001). Proportional recovery was two- to three-fold greater than control participants, with superior transfer to everyday motor, cognitive, and communication behaviors. All gains were maintained at follow-up

    Mice lacking NF-κB1 exhibit marked DNA damage responses and more severe gastric pathology in response to intraperitoneal tamoxifen administration

    Get PDF
    Tamoxifen (TAM) has recently been shown to cause acute gastric atrophy and metaplasia in mice. We have previously demonstrated that the outcome of Helicobacter felis infection, which induces similar gastric lesions in mice, is altered by deletion of specific NF-κB subunits. Nfkb1-/- mice developed more severe gastric atrophy than wild-type (WT) mice 6 weeks after H. felis infection. In contrast, Nfkb2-/- mice were protected from this pathology. We therefore hypothesized that gastric lesions induced by TAM may be similarly regulated by signaling via NF-κB subunits. Groups of five female C57BL/6 (WT), Nfkb1-/-, Nfkb2-/- and c-Rel-/- mice were administered 150 mg/kg TAM by IP injection. Seventy-two hours later, gastric corpus tissues were taken for quantitative histological assessment. In addition, groups of six female WT and Nfkb1-/- mice were exposed to 12 Gy γ-irradiation. Gastric epithelial apoptosis was quantified 6 and 48 h after irradiation. TAM induced gastric epithelial lesions in all strains of mice, but this was more severe in Nfkb1-/- mice than in WT mice. Nfkb1-/- mice exhibited more severe parietal cell loss than WT mice, had increased gastric epithelial expression of Ki67 and had an exaggerated gastric epithelial DNA damage response as quantified by γH2AX. To investigate whether the difference in gastric epithelial DNA damage response of Nfkb1-/- mice was unique to TAM-induced DNA damage or a generic consequence of DNA damage, we also assessed gastric epithelial apoptosis following γ-irradiation. Six hours after γ-irradiation, gastric epithelial apoptosis was increased in the gastric corpus and antrum of Nfkb1-/- mice. NF-κB1-mediated signaling regulates the development of gastric mucosal pathology following TAM administration. This is associated with an exaggerated gastric epithelial DNA damage response. This aberrant response appears to reflect a more generic sensitization of the gastric mucosa of Nfkb1-/- mice to DNA damage

    The opposites task: Using general rules to test cognitive flexibility in preschoolers

    Get PDF
    A brief narrative description of the journal article, document, or resource. Executive functions play an important role in cognitive development, and during the preschool years especially, children's performance is limited in tasks that demand flexibility in their behavior. We asked whether preschoolers would exhibit limitations when they are required to apply a general rule in the context of novel stimuli on every trial (the "opposites" task). Two types of inhibitory processing were measured: response interference (resistance to interference from a competing response) and proactive interference (resistance to interference from a previously relevant rule). Group data show 3-year-olds have difficulty inhibiting prepotent tendencies under these conditions, whereas 5-year-olds' accuracy is near ceiling in the task. (Contains 4 footnotes and 1 table.

    Do front-of-pack ‘green labels’ increase sustainable food choice and willingness-to-pay in U.K. consumers?

    Get PDF
    Aim: In a series of pre-registered online studies, we aimed to elucidate the magnitude of the effect of general sustainability labels on U.K. consumers’ food choices. Methods: Four labels were displayed: ‘Sustainably sourced’, ‘Locally sourced’, ‘Environmentally friendly’, and ‘Low greenhouse gas emissions’. To ensure reliable results, contingency valuation elicitation was used alongside a novel analytical approach to provide a triangulation of evidence: Multilevel-modelling compared each label vs. no-label; Poisson-modelling compared label vs. label. Socioeconomic status, environmental awareness, health motivations, and nationalism/patriotism were included in our predictive models. Results: Exp.1 Multilevel-modelling (N = 140) showed labelled products were chosen 344% more than non-labelled and consumers were willing-to-pay ∼£0.11 more, although no difference between label types was found. Poisson-modelling (N = 735) showed consumers chose Sustainably sourced and Locally sourced labels ∼20% more often but were willing-to-pay ∼£0.03 more only for Locally sourced products. Exp.2 was a direct replication. Multilevel-modelling (N = 149) showed virtually identical results (labels chosen 344% more, willingness-to-pay ∼£0.10 more), as did Poisson-modelling (N = 931) with Sustainably sourced and Locally sourced chosen ∼20% more and willingness-to-pay ∼£0.04 more for Locally sourced products. Environmental concern (specifically the ‘propensity to act’) was the only consistent predictor of preference for labelled vs. non-labelled products. Conclusions: Findings suggest front-of-pack ‘green labels’ may yield substantive increases in consumer choice alongside relatively modest increases in willingness-to-pay for environmentally-sustainable foods. Specifically, references to ‘sustainable’ or ‘local’ sourcing may have the largest impact

    Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium

    Get PDF
    The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)
    corecore