33 research outputs found

    RÎle du Liver X Receptor dans la régulation transcriptionnelle de la lipogenÚse

    Get PDF
    Chez les mammiferes, la lipogenese ou synthese de novo des acides gras joue un rĂŽle essentiel a l'homeostasie energetique. Elle est particulierement active dans le foie. Le Liver X Receptor (LXR) est un recepteur nucleaire de classe II qui est implique dans la regulation de l'expression de genes importants dans cette voie metabolique. Au niveau hepatique, LXR regule directement l'expression de certains genes de la lipogenese et aussi l'expression des facteurs de transcription SREBP-1c et ChREBP intervenant respectivement dans la reponse hepatique a l'insuline et au glucose. Les ligands naturels de LXR sont les oxysterols, des derives oxygenes du cholesterol. Aussi, LXR est avant tout considere et connu comme un senseur du cholesterol. Au cours de ces travaux nous nous sommes interesses in vivo au role de LXR dans la regulation transcriptionnelle de la lipogenese hepatique en fonction de differents stimuli: pharmacologiques, inflammatoires et nutritionnels. Par une approche pharmacologique, nous avons etudie la regulation croisee avec entre LXR et le recepteur active par les proliferateurs de peroxisome (PPAR . Nous avons aussi montre que l'inflammation intestinale est un puissant inhibiteur de la lipogenese hepatique. Enfin, nous avons mis en evidence le role de LXR dans la regulation de la lipogenese en reponse a une carence en acides gras essentiels et a un regime riche en fructose. ABSTRACT : In mammals, lipogenesis or de novo fatty acid synthesis plays an essential part in energy homeostasis. It is particularly active in the liver. The Liver X Receptor (LXR) is a class II nuclear receptor that regulates the expression of important genes involved in this pathway. In the liver, LXR directly controls the expression of lipogenic genes and also the expression of transcription factors such as SREBP-1c and ChREBP required for the hepatic response to insulin and glucose respectively. Natural ligands for LXR are oxysterols, which are oxygenated derivatives of cholesterol. Therefore, LXR is primarily considered and known as a cholesterol sensor. In this work, we were interested in the role of LXR in the transcriptional control of hepatic lipogenesis in vivo in response to distinct stimuli: pharmacological agonists, gut inflammation and changes in diet composition. Through a pharmacological study, we highlighted the cross-talk between LXR signaling and the regulation of the Peroxisome Proliferator Activated Receptor (PPAR ). We have also evidenced that experimentally induced colitis induces a potent inhibition of hepatic lipogenesis. Finally, we have shown that LXR is involved in the regulation of lipogenesis in response to essential fatty acid deficiency and to high fructose

    RÎle du Liver X Receptor dans la régulation transcriptionnelle de la lipogenÚse

    Get PDF
    Chez les mammiferes, la lipogenese ou synthese de novo des acides gras joue un rĂŽle essentiel a l'homeostasie energetique. Elle est particulierement active dans le foie. Le Liver X Receptor (LXR) est un recepteur nucleaire de classe II qui est implique dans la regulation de l'expression de genes importants dans cette voie metabolique. Au niveau hepatique, LXR regule directement l'expression de certains genes de la lipogenese et aussi l'expression des facteurs de transcription SREBP-1c et ChREBP intervenant respectivement dans la reponse hepatique a l'insuline et au glucose. Les ligands naturels de LXR sont les oxysterols, des derives oxygenes du cholesterol. Aussi, LXR est avant tout considere et connu comme un senseur du cholesterol. Au cours de ces travaux nous nous sommes interesses in vivo au role de LXR dans la regulation transcriptionnelle de la lipogenese hepatique en fonction de differents stimuli: pharmacologiques, inflammatoires et nutritionnels. Par une approche pharmacologique, nous avons etudie la regulation croisee avec entre LXR et le recepteur active par les proliferateurs de peroxisome (PPAR . Nous avons aussi montre que l'inflammation intestinale est un puissant inhibiteur de la lipogenese hepatique. Enfin, nous avons mis en evidence le role de LXR dans la regulation de la lipogenese en reponse a une carence en acides gras essentiels et a un regime riche en fructose.In mammals, lipogenesis or de novo fatty acid synthesis plays an essential part in energy homeostasis. It is particularly active in the liver. The Liver X Receptor (LXR) is a class II nuclear receptor that regulates the expression of important genes involved in this pathway. In the liver, LXR directly controls the expression of lipogenic genes and also the expression of transcription factors such as SREBP-1c and ChREBP required for the hepatic response to insulin and glucose respectively. Natural ligands for LXR are oxysterols, which are oxygenated derivatives of cholesterol. Therefore, LXR is primarily considered and known as a cholesterol sensor. In this work, we were interested in the role of LXR in the transcriptional control of hepatic lipogenesis in vivo in response to distinct stimuli: pharmacological agonists, gut inflammation and changes in diet composition. Through a pharmacological study, we highlighted the cross-talk between LXR signaling and the regulation of the Peroxisome Proliferator Activated Receptor (PPAR ). We have also evidenced that experimentally induced colitis induces a potent inhibition of hepatic lipogenesis. Finally, we have shown that LXR is involved in the regulation of lipogenesis in response to essential fatty acid deficiency and to high fructose.TOULOUSE-INP (315552154) / SudocSudocFranceF

    Chronic O-GlcNAcylation and Diabetic Cardiomyopathy: The Bitterness of Glucose

    Get PDF
    Type 2 diabetes (T2D) is a major risk factor for heart failure. Diabetic cardiomyopathy (DC) is characterized by diastolic dysfunction and left ventricular hypertrophy. Epidemiological data suggest that hyperglycaemia contributes to the development of DC. Several cellular pathways have been implicated in the deleterious effects of high glucose concentrations in the heart: oxidative stress, accumulation of advanced glycation end products (AGE), and chronic hexosamine biosynthetic pathway (HBP) activation. In the present review, we focus on the effect of chronic activation of the HBP on diabetic heart function. The HBP supplies N-acetylglucosamine moiety (O-GlcNAc) that is O-linked by O-GlcNAc transferase (OGT) to proteins on serine or threonine residues. This post-translational protein modification modulates the activity of the targeted proteins. In the heart, acute activation of the HBP in response to ischaemia-reperfusion injury appears to be protective. Conversely, chronic activation of the HBP in the diabetic heart affects Ca2+ handling, contractile properties, and mitochondrial function and promotes stress signaling, such as left ventricular hypertrophy and endoplasmic reticulum stress. Many studies have shown that O-GlcNAc impairs the function of key protein targets involved in these pathways, such as phospholamban, calmodulin kinase II, troponin I, and FOXO1. The data show that excessive O-GlcNAcylation is a major trigger of the glucotoxic events that affect heart function under chronic hyperglycaemia. Supporting this finding, pharmacological or genetic inhibition of the HBP in the diabetic heart improves heart function. In addition, the SGLT2 inhibitor dapagliflozin, a glucose lowering agent, has recently been shown to lower cardiac HBP in a lipodystophic T2D mice model and to concomitantly improve the diastolic dysfunction of these mice. Therefore, targeting cardiac-excessive O-GlcNAcylation or specific target proteins represents a potential therapeutic option to treat glucotoxicity in the diabetic heart

    Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes

    Get PDF
    Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.Peer reviewe

    Role of the Liver X Receptor in the transcriptional regulation of lipogenesis

    No full text
    Chez les mammiferes, la lipogenese ou synthese de novo des acides gras joue un rĂŽle essentiel a l'homeostasie energetique. Elle est particulierement active dans le foie. Le Liver X Receptor (LXR) est un recepteur nucleaire de classe II qui est implique dans la regulation de l'expression de genes importants dans cette voie metabolique. Au niveau hepatique, LXR regule directement l'expression de certains genes de la lipogenese et aussi l'expression des facteurs de transcription SREBP-1c et ChREBP intervenant respectivement dans la reponse hepatique a l'insuline et au glucose. Les ligands naturels de LXR sont les oxysterols, des derives oxygenes du cholesterol. Aussi, LXR est avant tout considere et connu comme un senseur du cholesterol. Au cours de ces travaux nous nous sommes interesses in vivo au role de LXR dans la regulation transcriptionnelle de la lipogenese hepatique en fonction de differents stimuli: pharmacologiques, inflammatoires et nutritionnels. Par une approche pharmacologique, nous avons etudie la regulation croisee avec entre LXR et le recepteur active par les proliferateurs de peroxisome (PPAR . Nous avons aussi montre que l'inflammation intestinale est un puissant inhibiteur de la lipogenese hepatique. Enfin, nous avons mis en evidence le role de LXR dans la regulation de la lipogenese en reponse a une carence en acides gras essentiels et a un regime riche en fructose.In mammals, lipogenesis or de novo fatty acid synthesis plays an essential part in energy homeostasis. It is particularly active in the liver. The Liver X Receptor (LXR) is a class II nuclear receptor that regulates the expression of important genes involved in this pathway. In the liver, LXR directly controls the expression of lipogenic genes and also the expression of transcription factors such as SREBP-1c and ChREBP required for the hepatic response to insulin and glucose respectively. Natural ligands for LXR are oxysterols, which are oxygenated derivatives of cholesterol. Therefore, LXR is primarily considered and known as a cholesterol sensor. In this work, we were interested in the role of LXR in the transcriptional control of hepatic lipogenesis in vivo in response to distinct stimuli: pharmacological agonists, gut inflammation and changes in diet composition. Through a pharmacological study, we highlighted the cross-talk between LXR signaling and the regulation of the Peroxisome Proliferator Activated Receptor (PPAR ). We have also evidenced that experimentally induced colitis induces a potent inhibition of hepatic lipogenesis. Finally, we have shown that LXR is involved in the regulation of lipogenesis in response to essential fatty acid deficiency and to high fructose

    Liver X Receptor: an oxysterol sensor and a major playerin the control of lipogenesis

    No full text
    International audienceDe novo fatty acid biosynthesis is also called lipogenesis. It is a metabolic pathway that provides the cellswith fatty acids required for major cellular processes such as energy storage, membrane structures andlipid signaling. In this article we will review the role of the Liver X Receptors (LXRs), nuclear receptorsthat sense oxysterols, in the transcriptional regulation of genes involved in lipogenesis

    Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1ÎČ

    No full text
    Non-alcoholic fatty liver diseases are the hepatic manifestation of metabolic syndrome. According to the classical pattern of NAFLD progression, de novo fatty acid synthesis has been incriminated in NAFLD progression. However, this hypothesis has been challenged by the re-evaluation of NAFLD development mechanisms together with the description of the role of lipogenic genes in NAFLD and with the recent observation that PGC-1ÎČ, a nuclear receptor/transcription factor coactivator involved in the transcriptional regulation of lipogenesis, displays protective effects against NAFLD/NASH progression. In this review, we focus on the implication of lipogenesis and triglycerides synthesis on the development of non-alcoholic fatty liver diseases and discuss the involvement of these pathways in the protective role of PGC-1ÎČ toward these hepatic manifestations

    PGC-1ÎČ Induces Susceptibility To Acetaminophen-Driven Acute Liver Failure

    No full text
    Acetaminophen (APAP) is a worldwide commonly used painkiller drug. However, high doses of APAP can lead to acute hepatic failure and, in some cases, death. Previous studies indicated that different factors, including life-style and metabolic diseases, could predispose to the risk of APAP-induced liver failure. However, the molecular process that could favor APAP hepatotoxicity remains understood. Here, we reported that a short-term high fat-enriched diet worsens APAP-induced liver damage, by promoting liver accumulation of lipids that induces the activation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1ÎČ). Therefore, we challenged mice with hepatic-specific PGC-1ÎČ overexpression on a chow diet with a subtoxic dose of APAP and we found that PGC-1ÎČ overexpression renders the liver more sensitive to APAP damage, mainly due to intense oxidative stress, finally ending up with liver necrosis and mice death. Overall, our results indicated that during high fat feeding, PGC-1ÎČ adversely influences the ability of the liver to overcome APAP toxicity by orchestrating different metabolic pathways that finally lead to fatal outcome

    Proton NMR enables the absolute quantification of aqueous metabolites and lipid classes in unique mouse liver samples

    No full text
    International audienceHepatic metabolites provide valuable information on the physiological state of an organism, and thus, they are monitored in many clinical situations. Typically, monitoring requires several analyses for each class of targeted metabolite, which is time consuming. The present study aimed to evaluate a proton nuclear magnetic resonance (1H-NMR) method for obtaining quantitative measurements of aqueous and lipidic metabolites. We optimized the extraction protocol, the standard samples, and the organic solvents for the absolute quantification of lipid species. To validate the method, we analyzed metabolic profiles in livers of mice fed three different diets. We compared our results with values obtained with conventional methods and found strong correlations. The 1H-NMR protocol enabled the absolute quantification of 29 aqueous metabolites and eight lipid classes. Results showed that mice fed a diet enriched in saturated fatty acids had higher levels of triglycerides, cholesterol ester, monounsaturated fatty acids, lactate, 3-hydroxy-butyrate, and alanine and lower levels of glucose, compared to mice fed a control diet. In conclusion, proton NMR provided a rapid overview of the main lipid classes (triglycerides, cholesterol, phospholipids, fatty acids) and the most abundant aqueous metabolites in liver
    corecore