596 research outputs found

    Anaesthetic management of people with multiple sclerosis.

    Get PDF
    There is a lack of published guidelines on the management of patients with multiple sclerosis (MS) undergoing procedures that require anaesthesia and respective advice is largely based on retrospective studies or case reports. The aim of this paper is to provide recommendations for anaesthetists and neurologists for the management of patients with MS requiring anaesthesia. This review covers issues related to the anaesthetic management of patients with MS, with a focus on preoperative assessment, choice of anaesthetic techniques and agents, side-effects of drugs used during anaesthesia and their potential impact on the disease evolution, drug interactions that may occur, and the need to use monitoring devices. A systematic PubMed research was performed to retrieve relevant articles

    Human influence on growing-period frosts like the early April 2021 in Central France

    Get PDF
    International audienceAbstract. In early April 2021 several days of harsh frost affected central Europe. This led to very severe damage in grapevine and fruit trees in France, in regions where young leaves had already unfolded due to unusually warm temperatures in the preceding month (March 2021). We analysed with observations and 172 climate model simulations how human-induced climate change affected this event over central France, where many vineyards are located. We found that, without human-caused climate change, such temperatures in April or later in spring would have been even lower by 1.2 ∘C (0.75 to 1.7 ∘C). However, climate change also caused an earlier occurrence of bud burst that we characterized in this study by a growing degree day index value. This shift leaves young leaves exposed to more winter-like conditions with lower minimum temperatures and longer nights, an effect that overcompensates the warming effect. Extreme cold temperatures occurring after the start of the growing season such as those of April 2021 are now 2 ∘C colder (0.5 to 3.3 ∘C) than in preindustrial conditions, according to observations. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change with each of the five climate model ensembles used here simulating a cooling of growing-period annual temperature minima of 0.41 ∘C (0.22 to 0.60 ∘C) since preindustrial conditions. The 2021 growing-period frost event has become 50 % more likely (10 %–110 %). Models accurately simulate the observed warming in extreme lowest spring temperatures but underestimate the observed trends in growing-period frost intensities, a fact that yet remains to be explained. Model ensembles all simulate a further intensification of yearly minimum temperatures occurring in the growing period for future decades and a significant probability increase for such events of about 30 % (20 %–40 %) in a climate with global warming of 2 ∘C

    Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones

    Get PDF
    Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for,10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e. g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containing fimbrial genes have been previously identified on the P. aeruginosa chromosome and named cup [1]. The assembly of the CupB pili is thought to be coordinated by two chaperones, CupB2 and CupB4. However, due to the lack of structural and biochemical data, their chaperone activities remain speculative. In this study, we report the 2.5 A crystal structure of P. aeruginosa CupB2. Based on the structure, we further tested the binding specificity of CupB2 and CupB4 towards CupB1 (the presumed major pilus subunit) and CupB6 (the putative adhesin) using limited trypsin digestion and strep-tactin pull-down assay. The structural and biochemical data suggest that CupB2 and CupB4 might play different, but not redundant, roles in CupB secretion. CupB2 is likely to be the chaperone of CupB1, and CupB4 could be the chaperone of CupB4:CupB5:CupB6, in which the interaction of CupB4 and CupB6 might be mediated via CupB5

    Primary breast lymphomas

    Get PDF
    The diagnosis, prognostic factors, and optimal management of primary breast lymphomas (PBL) is difficult. Seven patients recorded at the Geneva Cancer Registry between 1973–1998 were reviewed. Five patient had diffuse large B-cell lymphoma, one a follicular lymphoma and one a MALT-lymphoma. All patients had clinical and radiological findings consistent with breast cancer and underwent mastectomy, which is not indicated in PBL. Diagnosis should be established prior to operative interventions, as fine needle aspiration missed the diagnosis for one patient and intra-operative frozen sections for 3 patients in our study. Five-year and 10-year overall survivals were 57% and 15%, respectively. Of the 3 patients who died from PBL, 2 had tumors that were Bcl-2 positive but Bcl-6 negative. All 3 surviving patients have positive Bcl-2 and Bcl-6 immunostaining, which could be important prognostic factors if confirmed by a larger study

    Highlights of the 11th International Bordetella Symposium: From basic biology to vaccine development

    Get PDF
    Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis. The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals.Instituto de Biotecnologia y Biologia Molecula

    Highlights of the 11th International Bordetella Symposium: From basic biology to vaccine development

    Get PDF
    Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis. The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals.Instituto de Biotecnologia y Biologia Molecula

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    A Filamentous Hemagglutinin-Like Protein of Xanthomonas axonopodis pv. citri, the Phytopathogen Responsible for Citrus Canker, Is Involved in Bacterial Virulence

    Get PDF
    Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides
    corecore