623 research outputs found

    Black Hole Thermodynamics and Massive Gravity

    Full text link
    We consider the generalized laws of thermodynamics in massive gravity. Making use of explicit black hole solutions, we devise black hole merger processes in which i) total entropy of the system decreases ii) the zero-temperature extremal black hole is created. Thus, both second and third laws of thermodynamics are violated. In both cases, the violation can be traced back to the presence of negative-mass black holes, which, in turn, is related to the violation of the null energy condition. The violation of the third law of thermodynamics implies, in particular, that a naked singularity may be created as a result of the evolution of a singularity-free state. This may signal a problem in the model, unless the creation of the negative-mass black holes from positive-mass states can be forbidden dynamically or the naked singularity may somehow be resolved in a full quantum theory.Comment: 15 pages, 4 figures; v2:Style changed to JHEP. Discussion added in the conclusions. Revised version to match published versio

    Massive Gravity: Exorcising the Ghost

    Get PDF
    We consider Higgs massive gravity [1,2] and investigate whether a nonlinear ghost in this theory can be avoided. We show that although the theory considered in [10,11] is ghost free in the decoupling limit, the ghost nevertheless reappears in the fourth order away from the decoupling limit. We also demonstrate that there is no direct relation between the value of the Vainshtein scale and the existence of nonlinear ghost. We discuss how massive gravity should be modified to avoid the appearance of the ghost.Comment: 16 page

    The influence of D-branes' backreaction upon gravitational interactions between open strings

    Full text link
    We argue that gravitational interactions between open strings ending on D3-branes are largely shaped by the D3-branes' backreaction. To this end we consider classical open strings coupled to general relativity in Poincare AdS5 backgrounds. We compute the linear gravitational backreaction of a static string extending up to the Poincare horizon, and deduce the potential energy between two such strings. If spacetime is non-compact, we find that the gravitational potential energy between parallel open strings is independent of the strings' inertial masses and goes like 1/r at large distance r. If the space transverse to the D3-branes is suitably compactified, a collective mode of the graviton propagates usual four-dimensional gravity. In that case the backreaction of the D3-branes induces a correction to the Newtonian potential energy that violates the equivalence principle. The observed enhancement of the gravitational attraction is specific to string theory; there is no similar effect for point-particles.Comment: 28 pages, 7 figures. Typos corrected, minor addition

    Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector

    Full text link
    We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications, results unchanged

    Direct Mediation and Metastable Supersymmetry Breaking for SO(10)

    Full text link
    We examine a metastable N=1\mathcal{N}=1 Macroscopic SO(N) SQCD model of Intriligator, Seiberg and Shih (ISS). We introduce various baryon and meson deformations, including multitrace operators and explore embedding an SO(10) parent of the standard model into two weakly gauged flavour sectors. Direct fundamental messengers and the symmetric pseudo-modulus messenger mediate SUSY breaking to the MSSM. Gaugino and sfermion masses are computed and compared for each deformation type. We also explore reducing the rank of the magnetic quark matrix of the ISS model and find an additional fundamental messenger.Comment: 43 pages, Latex. Version to appear in JHEP

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    On Horava-Lifshitz "Black Holes"

    Full text link
    The most general spherically symmetric solution with zero shift is found in the non-projectable Horava-Lifshitz class of theories with general coupling constants. It contains as special cases, spherically symmetric solutions found by other authors earlier. It is found that the generic solution has conventional (AdS, dS or flat) asymptotics with a universal 1/r tail. There are several special cases where the asymptotics differ, including the detailed balance choice of couplings. The conventional thermodynamics of this general class of solutions is established by calculating the energy, temperature and entropy. Although several of the solutions have conventional horizons, for particles with ultra-luminal dispersion relations such solutions appear to be horizonless.Comment: Latex 41 pages, 5 figure

    Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance

    Get PDF
    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.Comment: 45 pages, no figures

    Domain wall brane in squared curvature gravity

    Full text link
    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\"odinger equation with a volcano potential, and the other a P\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version to be published in JHE
    • …
    corecore