12 research outputs found

    Spontaneous emission of a quantum particle under strong Stark interaction with resonant vacuum field

    Full text link
    It has been shown that strong Stark interaction of a quantum particle with a vacuum electromagnetic field reduces the speed of the one-quantum spontaneous radiation and leads to additional shift of frequency of radiation transition.Comment: 6 page

    A method of solving the heat-conduction problem for simple laminated bodies

    No full text

    Natural Products and Pharmacological Properties of Symbiotic Bacillota (Firmicutes) of Marine Macroalgae

    No full text
    The shift from the terrestrial to the marine environment to discover natural products has given rise to novel bioactive compounds, some of which have been approved for human medicine. However, the ocean, which makes up nearly three-quarters of the Earth’s surface, contains macro- and microorganisms whose natural products are yet to be explored. Among these underexplored marine organisms are macroalgae and their symbiotic microbes, such as Bacillota, a phylum of mostly Gram-positive bacteria previously known as Firmicutes. Macroalgae-associated Bacillota often produce chemical compounds that protect them and their hosts from competitive and harmful rivals. Here, we summarised the natural products made by macroalgae-associated Bacillota and their pharmacological properties. We discovered that these Bacillota are efficient producers of novel biologically active molecules. However, only a few macroalgae had been investigated for chemical constituents of their Bacillota: nine brown, five red and one green algae. Thus, Bacillota, especially from the marine habitat, should be investigated for potential pharmaceutical leads. Moreover, additional diverse biological assays for the isolated molecules of macroalgae Bacillota should be implemented to expand their bioactivity profiles, as only antibacterial properties were tested for most compounds

    >

    No full text

    Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes

    No full text
    Summary: How mutations in glial fibrillary acidic protein (GFAP) cause Alexander disease (AxD) remains elusive. We generated iPSCs from two AxD patients and corrected the GFAP mutations to examine the effects of mutant GFAP on human astrocytes. AxD astrocytes displayed GFAP aggregates, recapitulating the pathological hallmark of AxD. RNA sequencing implicated the endoplasmic reticulum, vesicle regulation, and cellular metabolism. Corroborating this analysis, we observed enlarged and heterogeneous morphology coupled with perinuclear localization of endoplasmic reticulum and lysosomes in AxD astrocytes. Functionally, AxD astrocytes showed impaired extracellular ATP release, which is responsible for attenuated calcium wave propagation. These results reveal that AxD-causing mutations in GFAP disrupt intracellular vesicle regulation and impair astrocyte secretion, resulting in astrocyte dysfunction and AxD pathogenesis. : Jones et al. study the structure function relationship of GFAP on astrocytes using Alexander disease patient-derived induced pluripotent stem cells. Mutations in GFAP result in mislocalization of organelles and functional consequences such as reduced ATP release and attenuated calcium wave propagation. Genetic correction of mutant GFAP rescues these defects. Keywords: Alexander disease, iPSC, CRISPR, endoplasmic reticulum, lysosom
    corecore