1,002 research outputs found

    Coherent low-energy charge transport in a diffusive S-N-S junction

    Full text link
    We have studied the current voltage characteristics of diffusive mesoscopic Nb-Cu-Nb Josephson junctions with highly-transparent Nb-Cu interfaces. We consider the low-voltage and high-temperature regime eV<\epsilon_{c}<k_{B}T where epsilon_{c} is the Thouless energy. The observed excess current as well as the observed sub-harmonic Shapiro steps under microwave irradiation suggest the occurrence of low-energy coherent Multiple Andreev Reflection (MAR).Comment: 4 pages, 4 figures, final versio

    Commissioning and operation of the Cherenkov detector for proton Flux Measurement of the UA9 Experiment

    Full text link
    The UA9 Experiment at CERN-SPS investigates channeling processes in bent silicon crystals with the aim to manipulate hadron beams. Monitoring and characterization of channeled beams in the high energy accelerators environment ideally requires in-vacuum and radiation hard detectors. For this purpose the Cherenkov detector for proton Flux Measurement (CpFM) was designed and developed. It is based on thin fused silica bars in the beam pipe vacuum which intercept charged particles and generate Cherenkov light. The first version of the CpFM is installed since 2015 in the crystal-assisted collimation setup of the UA9 experiment. In this paper the procedures to make the detector operational and fully integrated in the UA9 setup are described. The most important standard operations of the detector are presented. They have been used to commission and characterize the detector, providing moreover the measurement of the integrated channeled beam profile and several functionality tests as the determination of the crystal bending angle. The calibration has been performed with Lead (Pb) and Xenon (Xe) beams and the results are applied to the flux measurement discussed here in detail.Comment: 25 pages, 14 figure

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems

    Full text link
    Andreev bound states in clean, ballistic SNS and SNSNS junctions are calculated exactly and by using the Andreev approximation (AA). The AA appears to break down for junctions with transverse dimensions chosen such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy is lifted. A multiple-scattering Green's function formalism is used, from which the states are found through the local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-consistent determination of the gap function. In the numerical calculations the pairing coupling constant for aluminum is used. Various features of the proximity effect are shown

    Direct demonstration of circulating currents in a controllable π\pi-SQUID generated by a 0 to π\pi transition of the weak links

    Get PDF
    A controllable π\pi-SQUID is a DC SQUID with two controllable π\pi-junctions as weak links. A controllable π\pi-junction consists of a superconducting - normal metal - superconducting Josephson junction with two additional contacts to the normal region of the junction. By applying a voltage VcV_c over these contacts it is possible to control the sate of the junction, i.e. a conventional (0) state or a π\pi-state, depending on the magnitude of VcV_c. We demonstrate experimentally that, by putting one junction into a π\pi-state, a screening current is generated around the SQUID loop at integer external flux. To be able to do this, we have fabricated controllable π\pi-junctions, based on Cu-Nb or Ag-Nb, in a new geometry. We show that at 1.4 K only the Nb-Ag device shows the transition to a π\pi-state as a function of VcV_c consistent with theoretical predictions. In a controllable π\pi SQUID based on Nb-Ag we observe, a part from a screening current at integer external flux, a phase shift of π\pi of the VSQUIDBV_{SQUID}-B oscillations under suitable current bias, depending on the magnitude of VcV_c.Comment: 11 pages, 12 figures, subm. to Phys. Rev.

    The non-convex shape of (234) Barbara, the first Barbarian

    Full text link
    Asteroid (234) Barbara is the prototype of a category of asteroids that has been shown to be extremely rich in refractory inclusions, the oldest material ever found in the Solar System. It exhibits several peculiar features, most notably its polarimetric behavior. In recent years other objects sharing the same property (collectively known as "Barbarians") have been discovered. Interferometric observations in the mid-infrared with the ESO VLTI suggested that (234) Barbara might have a bi-lobated shape or even a large companion satellite. We use a large set of 57 optical lightcurves acquired between 1979 and 2014, together with the timings of two stellar occultations in 2009, to determine the rotation period, spin-vector coordinates, and 3-D shape of (234) Barbara, using two different shape reconstruction algorithms. By using the lightcurves combined to the results obtained from stellar occultations, we are able to show that the shape of (234) Barbara exhibits large concave areas. Possible links of the shape to the polarimetric properties and the object evolution are discussed. We also show that VLTI data can be modeled without the presence of a satellite.Comment: 10 pages, 6 figure

    Subharmonic Shapiro steps and assisted tunneling in superconducting point contacts

    Full text link
    We analyze the current in a superconducting point contact of arbitrary transmission in the presence of a microwave radiation. The interplay between the ac Josephson current and the microwave signal gives rise to Shapiro steps at voltages V = (m/n) \hbar \omega_r/2e, where n,m are integer numbers and \omega_r is the radiation frequency. The subharmonic steps (n different from 1) are a consequence of the ocurrence of multiple Andreev reflections (MAR) and provide an unambiguous signature of the peculiar ac Josephson effect at high transmission. Moreover, the dc current exhibits a rich subgap structure due to photon-assisted MARs.Comment: Revtex, 4 pages, 4 figure

    Tuning a Josephson junction through a quantum critical point

    Full text link
    We tune the barrier of a Josephson junction through a zero-temperature metal-insulator transition and study the thermodynamic behavior of the junction in the proximity of the quantum-critical point. We examine a short-coherence-length superconductor and a barrier (that is described by a Falicov-Kimball model) using the local approximation and dynamical mean-field theory. The inhomogeneous system is self-consistently solved by performing a Fourier transformation in the planar momentum and exactly inverting the remaining one-dimensional matrix with the renormalized perturbation expansion. Our results show a delicate interplay between oscillations on the scale of the Fermi wavelength and pair-field correlations on the scale of the coherence length, variations in the current-phase relationship, and dramatic changes in the characteristic voltage as a function of the barrier thickness or correlation strength (which can lead to an ``intrinsic'' pinhole effect).Comment: 16 pages, 15 figures, ReVTe

    A Social-Psychological Model of Human Crowding Phenomena

    Full text link
    Previous research on crowding has generally lacked a theoretical perspective. Moreover, there has been a tendency to view crowding in terms of spatial considerations alone and a failure to distinguish between the physical condition (density) and the psychological experience (crowding). In the present discussion, a heuristic model of human crowding phenomena is proposed which permits an integration of various theoretical perspectives and the derivation of experimental hypotheses. Although the limitation of space remains as the essential ingredient of crowding, the proposed model introduces personal and social variables which have a direct bearing on a person's perception of spatial restriction as well as on his attempts to cope with this constraint. The relation between the dimensions of the model is examined in terms of social-psychological theory. Finally, a program for future research is discussed. © 1972 Taylor &amp; Francis Group, LLC

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part I

    Get PDF
    corecore