181 research outputs found

    Education thérapeutique à l'insulinothérapie fonctionnelle au CHU d'Angers au sein d'une cohorte de 124 diabétiques de type 1 (évaluation de l'impact sur les paramÚtres clinico-biologiques et sur la qualité de vie à 6 mois)

    Get PDF
    L'insulinothérapie fonctionnelle (IF) est un modÚle d'éducation thérapeutique qui a pour objectif d'améliorer l'équilibre glycémique et de restaurer une bonne qualité de vie, en offrant au patient une plus grande souplesse dans le maniement de son traitement. L IF a considérablement amélioré la prise en charge thérapeutique des diabétiques de type 1. Matériel et méthodes : Depuis 2008, un programme d'éducation à l'IF est proposé au CHU d'Angers et a conduit à l'élaboration d'une cohorte de 124 diabétiques de type 1 éduqués à l'IF. Notre travail a consisté à étudier l'évolution de l'équilibre métabolique et de la qualité de vie au sein de cette cohorte. L'hémoglobine glyquée, la fréquence des hypoglycémies sévÚres et non sévÚres et le poids ont été analysés. Les questionnaires utilisés pour apprécier la qualité de vie sont l'ADDQoL et le DTSQ. Résultats : Les patients les plus déséquilibrés réduisent leur hémoglobine glyquée de plus de 0,5 %. De plus, les patients dont l'objectif personnalisé est de rééquilibrer leur diabÚte améliorent également leur HbA1C. Nous ne retrouvons pas de différence significative concernant les hypoglycémies, le poids ou la qualité de vie. Conclusion : Notre étude démontre que l'IF permet d'améliorer l'HbA1C des patients trÚs déséquilibrés. Les patients ayant pour objectif personnalisé de rééquilibrer leur diabÚte améliorent également leur HbA1C. Ces résultats soulignent l'importance du diagnostic éducatif au sein d'un programme d'ETP, car il permet de susciter la motivation du patient et d'atteindre ainsi les objectifs définis avec l'équipe médicale.Functional intensified insulin therapy (FIT) is a model of structured education program, which objective is to improve glycemic control and to restaure a good quality of life. Giving the patient an easier way to manage his treatment, FIT has improved therapeutic management of type 1 diabetic persons. Material & methods : A structured education program to FIT is proposed in the diabetology unit of the Hospital of Angers since 2008. We followed a cohort of 124 type 1 diabetic patients trained to IIT during 6 months. Our aim is to assess the changes in glycemic control, biomedical outcomes and quality of life of these patients. The questionnaires used to assess quality of life are ADDQoL and DTSQ. Results : Patients with poor glycemic control improve their HbA1C, better than 0,5 % (main outcome). Moreover, patients whose personal objective was improving their metabolic control reach a significant value of HbA1C decrease. There is no difference regarding hypoglycemias, weight or quality of life. Conclusion : Our study show a better improvement of HbA1C among patients with poorer glycemic control, and in patients who attempt to improve their HbA1C. These results highlight the importance of the "shared educational assessment" within structured education programs, which define patients' needs and allow him to achieve this goal, by exploring his motivation to change.ANGERS-BU Médecine-Pharmacie (490072105) / SudocSudocFranceF

    A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain

    Get PDF
    RNA-interference-driven loss of function in specific tissues in vivo should permit analysis of gene function in temporally and spatially defined contexts. However, delivery of efficient short hairpin RNA (shRNA) to target tissues in vivo remains problematic. Here, we demonstrate that efficiency of polyethylenimine (PEI)-delivered shRNA depends on the regulatory sequences used, both in vivo and in vitro. When tested in vivo, silencing of a luciferase target gene by shRNA produced from a hybrid construct composed of the CMV enhancer/promoter placed immediately upstream of an H1 promoter (50%) exceeds that obtained with the H1 promoter alone (20%). In contrast, in NIH 3T3 cells, the H1 promoter was more efficient than the hybrid construct (75 versus 60% inhibition of target gene expression, respectively). To test CMV-H1 shRNA efficiency against an endogenous gene in vivo, we used shRNA against thyroid hormone receptor α1 (TRα1). When vectorized in the mouse brain, the hybrid construct strongly derepressed CyclinD1-luciferase reporter gene expression, CyclinD1 being a negatively regulated thyroid hormone target gene. We conclude that promoter choice affects shRNA efficiency distinctly in different in vitro and in vivo situations and that a hybrid CMV-H1 construct is optimal for shRNA delivery in the mouse brain

    The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts: MYOSIN-X TRANSPORT OF VE-CADHERIN ALONG FILOPODIA

    Get PDF
    International audienceVascular endothelium (VE), the monolayer of endothelial cells that lines the vascular tree, undergoes damage at the basis of some vascular diseases. Its integrity is maintained by VE-cadherin, an adhesive receptor localized at cell-cell junctions. Here, we show that VE-cadherin is also located at the tip and along filopodia in sparse or subconfluent endothelial cells. We observed that VE-cadherin navigates along intrafilopodial actin filaments. We found that the actin motor protein myosin-X is colocalized and moves synchronously with filopodial VE-cadherin. Immunoprecipitation and pulldown assays confirmed that myosin-X is directly associated with the VE-cadherin complex. Furthermore, expression of a dominant-negative mutant of myosin-X revealed that myosin-X is required for VE-cadherin export to cell edges and filopodia. These features indicate that myosin-X establishes a link between the actin cytoskeleton and VE-cadherin, thereby allowing VEcadherin transportation along intrafilopodial actin cables. In conclusion, we propose that VE-cadherin trafficking along filopodia using myosin-X motor protein is a prerequisite for cell-cell junction formation. This mechanism may have functional consequences for endothelium repair in pathological settings

    Exploring Functional ÎČ-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker

    Get PDF
    BACKGROUND:The mass of pancreatic beta-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous beta-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of beta-cells and investigated their physiological relevance in increased insulin demand conditions in rats. METHODS:Two rat beta-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. beta(high) and beta(low)-cells. Insulin release, Ca(2+) movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, beta(high) and beta(low)-cell distribution and functionality were investigated in animal models with decreased or increased beta-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat. RESULTS:We show that beta-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike beta(low)-cells, beta(high)-cells express functional beta-cell markers and are highly responsive to various insulin secretagogues. Whereas beta(low)-cells represent the main population in diabetic pancreas, an increase in beta(high)-cells is associated with gain of function that follows sustained glucose overload. CONCLUSION:Our data show that a functional heterogeneity of beta-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in beta-cell defects in type 2 diabetes

    Associations among hypertension, dementia biomarkers, and cognition: The MEMENTO cohort

    Get PDF
    Introduction Approximately 40% of dementia cases could be delayed or prevented acting on modifiable risk factors including hypertension. However, the mechanisms underlying the hypertension–dementia association are still poorly understood. Methods We conducted a cross-sectional analysis in 2048 patients from the MEMENTO cohort, a French multicenter clinic-based study of outpatients with either isolated cognitive complaints or mild cognitive impairment. Exposure to hypertension was defined as a combination of high blood pressure (BP) status and antihypertensive treatment intake. Pathway associations were examined through structural equation modeling integrating extensive collection of neuroimaging biomarkers and clinical data. Results Participants treated with high BP had significantly lower cognition compared to the others. This association was mediated by higher neurodegeneration and higher white matter hyperintensities load but not by Alzheimer's disease (AD) biomarkers. Discussion These results highlight the importance of controlling hypertension for prevention of cognitive decline and offer new insights on mechanisms underlying the hypertension–dementia association. Highlights Paths of hypertension–cognition association were assessed by structural equation models. The hypertension–cognition association is not mediated by Alzheimer's disease biomarkers. The hypertension–cognition association is mediated by neurodegeneration and leukoaraiosis. Lower cognition was limited to participants treated with uncontrolled blood pressure. Blood pressure control could contribute to promote healthier brain aging.Stopping cognitive decline and dementia by fighting covert cerebral small vessel diseas

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Impact of hyperglycemia on cardiac sensitivity to ischemia-reperfusion : complex interplay between mitochondrial dynamics, calcium homeostasis and reactive oxygen species production

    No full text
    L’hyperglycĂ©mie per se est reconnue comme un facteur prĂ©dictif de la sĂ©vĂ©ritĂ© des lĂ©sions cardiaques suite Ă  un infarctus du myocarde. Cependant, les mĂ©canismes cellulaires sous-jacents restent Ă  investiguer. La dynamique mitochondriale, processus dĂ©crivant Ă  la fois les changements de morphologie des mitochondries ainsi que leur interaction avec d’autres organites tels que le rĂ©ticulum, a Ă©mergĂ©e ces derniĂšres annĂ©es comme un acteur clĂ© de la sensibilitĂ© du cƓur Ă  l’ischĂ©mie-reperfusion (IR). NĂ©anmoins, son rĂŽle dans les effets dĂ©lĂ©tĂšres de l’hyperglycĂ©mie au cours de l’IR n’a jamais Ă©tĂ© investiguĂ©. Ainsi, nous avons Ă©mis l’hypothĂšse (i) que la sensibilitĂ© accrue du cƓur Ă  l’IR en condition d’hyperglycĂ©mie pouvait s’expliquer par un impact de l’hyperglycĂ©mie sur l’interaction complexe entre la dynamique mitochondriale, l’homĂ©ostasie calcique cellulaire et la production d’espĂšces rĂ©actives de l’oxygĂšne (ERO) et (ii) que l’activation de Drp1, rĂ©gulateur majeur de la dynamique mitochondriale, pouvait jouer un rĂŽle central dans ce phĂ©nomĂšne. Nous avons pu rapporter dans ce travail de thĂšse, une augmentation des interactions entre le rĂ©ticulum sarcoplasmique et les mitochondries, associĂ©e Ă  une fission mitochondriale exacerbĂ©e lorsque l’IR est rĂ©alisĂ©e sur des cƓurs isolĂ©s perfusĂ©s avec une solution hyperglycĂ©mique, en comparaison avec une solution normoglycĂ©mique. De plus, nous avons observĂ©, sur mitochondries et cardiomyocytes isolĂ©s, que l’hyperglycĂ©mie est Ă  l’origine d’un cercle vicieux entre surproduction d’ERO d’origine mitochondriale, instabilitĂ© du rĂ©cepteur Ă  la ryanodine et entrĂ©e accrue de calcium dans les mitochondries. Cette interaction complexe pourrait contribuer Ă  expliquer l'activation prĂ©coce du mPTP observĂ©e sur les mitochondries issues de cƓurs perfusĂ©s avec une solution hyperglycĂ©mique ou de cƓurs de rats traitĂ©s Ă  la streptozotocine. Pour finir, de maniĂšre intĂ©ressante, nous avons rapportĂ© quel’inhibition de Drp1, via l’injection de Mdivi-1 au cours de la phase hyperglycĂ©mique, permet de normaliser les troubles de l'homĂ©ostasie calcique, la production de ROS, l'activation du mPTP et in fine rĂ©duit la sensibilitĂ© du cƓur Ă  l'IR chez les rats traitĂ©s Ă  la streptozotocine. En conclusion, ce travail de thĂšse a permis de mettre en Ă©vidence que l'activation de Drp1 en rĂ©ponse Ă  l'hyperglycĂ©mie entraĂźne une altĂ©ration de la dynamique mitochondriale et de l'homĂ©ostasie calcique cellulaire, participant Ă  la vulnĂ©rabilitĂ© accrue du cƓur Ă  l'IR.Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of Drp1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). Drp1 inhibition by Mdivi-1 during the hyperglycemic phase, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent Drp1 activation results in altered mitochondrial dynamics and Ca2+ homeostasis that contribute to the higher heart vulnerability to IR

    Impact de l’hyperglycĂ©mie sur la sensibilitĂ© du cƓur Ă  l’ischĂ©mie-reperfusion : interaction complexe entre dynamique mitochondriale, homĂ©ostasie calcique et production d’espĂšces rĂ©actives de l’oxygĂšne

    No full text
    Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of Drp1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). Drp1 inhibition by Mdivi-1 during the hyperglycemic phase, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent Drp1 activation results in altered mitochondrial dynamics and Ca2+ homeostasis that contribute to the higher heart vulnerability to IR.L’hyperglycĂ©mie per se est reconnue comme un facteur prĂ©dictif de la sĂ©vĂ©ritĂ© des lĂ©sions cardiaques suite Ă  un infarctus du myocarde. Cependant, les mĂ©canismes cellulaires sous-jacents restent Ă  investiguer. La dynamique mitochondriale, processus dĂ©crivant Ă  la fois les changements de morphologie des mitochondries ainsi que leur interaction avec d’autres organites tels que le rĂ©ticulum, a Ă©mergĂ©e ces derniĂšres annĂ©es comme un acteur clĂ© de la sensibilitĂ© du cƓur Ă  l’ischĂ©mie-reperfusion (IR). NĂ©anmoins, son rĂŽle dans les effets dĂ©lĂ©tĂšres de l’hyperglycĂ©mie au cours de l’IR n’a jamais Ă©tĂ© investiguĂ©. Ainsi, nous avons Ă©mis l’hypothĂšse (i) que la sensibilitĂ© accrue du cƓur Ă  l’IR en condition d’hyperglycĂ©mie pouvait s’expliquer par un impact de l’hyperglycĂ©mie sur l’interaction complexe entre la dynamique mitochondriale, l’homĂ©ostasie calcique cellulaire et la production d’espĂšces rĂ©actives de l’oxygĂšne (ERO) et (ii) que l’activation de Drp1, rĂ©gulateur majeur de la dynamique mitochondriale, pouvait jouer un rĂŽle central dans ce phĂ©nomĂšne. Nous avons pu rapporter dans ce travail de thĂšse, une augmentation des interactions entre le rĂ©ticulum sarcoplasmique et les mitochondries, associĂ©e Ă  une fission mitochondriale exacerbĂ©e lorsque l’IR est rĂ©alisĂ©e sur des cƓurs isolĂ©s perfusĂ©s avec une solution hyperglycĂ©mique, en comparaison avec une solution normoglycĂ©mique. De plus, nous avons observĂ©, sur mitochondries et cardiomyocytes isolĂ©s, que l’hyperglycĂ©mie est Ă  l’origine d’un cercle vicieux entre surproduction d’ERO d’origine mitochondriale, instabilitĂ© du rĂ©cepteur Ă  la ryanodine et entrĂ©e accrue de calcium dans les mitochondries. Cette interaction complexe pourrait contribuer Ă  expliquer l'activation prĂ©coce du mPTP observĂ©e sur les mitochondries issues de cƓurs perfusĂ©s avec une solution hyperglycĂ©mique ou de cƓurs de rats traitĂ©s Ă  la streptozotocine. Pour finir, de maniĂšre intĂ©ressante, nous avons rapportĂ© quel’inhibition de Drp1, via l’injection de Mdivi-1 au cours de la phase hyperglycĂ©mique, permet de normaliser les troubles de l'homĂ©ostasie calcique, la production de ROS, l'activation du mPTP et in fine rĂ©duit la sensibilitĂ© du cƓur Ă  l'IR chez les rats traitĂ©s Ă  la streptozotocine. En conclusion, ce travail de thĂšse a permis de mettre en Ă©vidence que l'activation de Drp1 en rĂ©ponse Ă  l'hyperglycĂ©mie entraĂźne une altĂ©ration de la dynamique mitochondriale et de l'homĂ©ostasie calcique cellulaire, participant Ă  la vulnĂ©rabilitĂ© accrue du cƓur Ă  l'IR
    • 

    corecore