13,517 research outputs found

    Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    Full text link
    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise L(f)=104 dBc/Hz\mathcal{L}(f)=-104 \ \mathrm{dBc}/\mathrm{Hz} at 1 Hz Fourier frequency, at the level of the best value obtained with such "microwave photonics" laboratory experiments \cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise microwave signals will now be available in laboratories outside the frequency metrology field, opening up new possibilities in various domains.Comment: 8 pages, 3 figures. To be published in Applied Optics, early posting version available at http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=23114

    Damping rate of plasmons and photons in a degenerate nonrelativistic plasma

    Full text link
    A calculation is presented of the plasmon and photon damping rates in a dense nonrelativistic plasma at zero temperature, following the resummation program of Braaten-Pisarski. At small soft momentum kk, the damping is dominated by 323 \to 2 scattering processes corresponding to double longitudinal Landau damping. The dampings are proportional to (α/vF)3/2k2/m(\alpha/v_{F})^{3/2} k^2/m, where vFv_{F} is the Fermi velocity.Comment: 9 pages, 2 figure

    Spin glass behavior in an interacting gamma-Fe2O3 nanoparticle system

    Get PDF
    In this paper we investigate the superspin glass behavior of a concentrated assembly of interacting maghemite nanoparticles and compare it to that of canonical atomic spin glass systems. ac versus temperature and frequency measurements show evidence of a superspin glass transition taking place at low temperature. In order to fully characterize the superspin glass phase, the aging behavior of both the thermo-remanent magnetization (TRM) and ac susceptibility has been investigated. It is shown that the scaling laws obeyed by superspin glasses and atomic spin glasses are essentially the same, after subtraction of a superparamagnetic contribution from the superspin glass response functions. Finally, we discuss a possible origin of this superparamagnetic contribution in terms of dilute spin glass models

    Thermodynamic Studies of [H_(2)Rh(diphosphine)_2]^+ and [HRh(diphosphine)_(2)(CH_(3)CN)]^(2+) Complexes in Acetonitrile

    Get PDF
    Thermodynamic studies of a series of [H_(2)Rh(PP)_2]^+ and [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H_2 to [Rh(PP)_2]^+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pK_a values for [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H_(2)Rh(PP)_2]^+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents

    N-complexes as functors, amplitude cohomology and fusion rules

    Get PDF
    We consider N-complexes as functors over an appropriate linear category in order to show first that the Krull-Schmidt Theorem holds, then to prove that amplitude cohomology only vanishes on injective functors providing a well defined functor on the stable category. For left truncated N-complexes, we show that amplitude cohomology discriminates the isomorphism class up to a projective functor summand. Moreover amplitude cohomology of positive N-complexes is proved to be isomorphic to an Ext functor of an indecomposable N-complex inside the abelian functor category. Finally we show that for the monoidal structure of N-complexes a Clebsch-Gordan formula holds, in other words the fusion rules for N-complexes can be determined.Comment: Final versio

    Risk and Business Goal Based Security Requirement and Countermeasure Prioritization

    Get PDF
    Companies are under pressure to be in control of their assets but at the same time they must operate as efficiently as possible. This means that they aim to implement “good-enough security” but need to be able to justify their security investment plans. Currently companies achieve this by means of checklist-based security assessments, but these methods are a way to achieve consensus without being able to provide justifications of countermeasures in terms of business goals. But such justifications are needed to operate securely and effectively in networked businesses. In this paper, we first compare a Risk-Based Requirements Prioritization method (RiskREP) with some requirements engineering and risk assessment methods based on their requirements elicitation and prioritization properties. RiskREP extends misuse case-based requirements engineering methods with IT architecture-based risk assessment and countermeasure definition and prioritization. Then, we present how RiskREP prioritizes countermeasures by linking business goals to countermeasure specification. Prioritizing countermeasures based on business goals is especially important to provide the stakeholders with structured arguments for choosing a set of countermeasures to implement. We illustrate RiskREP and how it prioritizes the countermeasures it elicits by an application to an action case

    Massive spheroids can form in single minor mergers

    Get PDF
    Accepted for publication in MNRAS, 12 pages, 6 figuresUnderstanding how rotationally supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of ‘ex situ’ stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M ∗ > 10 11M) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11–0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myr, coupled with strong in situ star formation. While this channel produces a minority (∼5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers – or any significant merging at all – contrary to what is classically believed.Peer reviewedFinal Accepted Versio

    Dutch guideline on food allergy

    Get PDF
    The diagnosis of food allergy is established in cases where an immediate allergic reaction has occurred in the last year to a clearly identifiable allergenic food combined with sensitisation to this allergenic food. In all other cases, a food challenge test is required to establish or reject the diagnosis of food allergy. Although the double-blind placebo-controlled food challenge (DBPCFC) test is considered the gold standard, false-positive and false-negative outcomes occur. The incidence of false-positive outcomes is unknown because the results of DBPCFC tests cannot be further confirmed by other tests. If possible, it is important to perform double-blind challenges with recipes that have been validated for blinding and to use challenge procedures that have been proven safe in clinical practice, in order to reduce the risk of unwanted false-positive and false-negative outcomes and severe challenge reactions. The national guideline of the Dutch Society of Allergology describes when challenges are indicated and contraindicated, how food challenges are best conducted and how patients could best be managed and followed-up after the challenge tests have been completed

    Noncommutative Geometry of Finite Groups

    Full text link
    A finite set can be supplied with a group structure which can then be used to select (classes of) differential calculi on it via the notions of left-, right- and bicovariance. A corresponding framework has been developed by Woronowicz, more generally for Hopf algebras including quantum groups. A differential calculus is regarded as the most basic structure needed for the introduction of further geometric notions like linear connections and, moreover, for the formulation of field theories and dynamics on finite sets. Associated with each bicovariant first order differential calculus on a finite group is a braid operator which plays an important role for the construction of distinguished geometric structures. For a covariant calculus, there are notions of invariance for linear connections and tensors. All these concepts are explored for finite groups and illustrated with examples. Some results are formulated more generally for arbitrary associative (Hopf) algebras. In particular, the problem of extension of a connection on a bimodule (over an associative algebra) to tensor products is investigated, leading to the class of `extensible connections'. It is shown that invariance properties of an extensible connection on a bimodule over a Hopf algebra are carried over to the extension. Furthermore, an invariance property of a connection is also shared by a `dual connection' which exists on the dual bimodule (as defined in this work).Comment: 34 pages, Late
    corecore