12 research outputs found

    The Karlskrona manifesto for sustainability design

    Get PDF
    Sustainability is a central concern for our society, and software systems increasingly play a central role in it. As designers of software technology, we cause change and are responsible for the effects of our design choices. We recognize that there is a rapidly increasing awareness of the fundamental need and desire for a more sustainable world, and there is a lot of genuine goodwill. However, this alone will be ineffective unless we come to understand and address our persistent misperceptions. The Karlskrona Manifesto for Sustainability Design aims to initiate a much needed conversation in and beyond the software community by highlighting such perceptions and proposing a set of fundamental principles for sustainability design

    Dissection of DNA double-strand-break repair using novel single-molecule forceps.

    Get PDF
    Repairing DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nanomanipulation, allowing us to mechanically detect, probe, and rupture in real-time DSB synapsis by specific human NHEJ components. DNA-PKcs and Ku allow DNA end synapsis on the 100 ms timescale, and the addition of PAXX extends this lifetime to ~2 s. Further addition of XRCC4, XLF and ligase IV results in minute-scale synapsis and leads to robust repair of both strands of the nanomanipulated DNA. The energetic contribution of the different components to synaptic stability is typically on the scale of a few kilocalories per mole. Our results define assembly rules for NHEJ machinery and unveil the importance of weak interactions, rapidly ruptured even at sub-picoNewton forces, in regulating this multicomponent chemomechanical system for genome integrity

    The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair

    Get PDF
    DNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here, we studied the mechanism of communication that couples mismatch recognition to daughter strand incision. We investigated the effect of catalytically-deficient Cas9 as well as stalled RNA polymerase as roadblocks placed on DNA in between the mismatch and GATC site in ensemble and single molecule nanomanipulation incision assays. The MMR proteins were observed to incise GATC sites beyond a roadblock, albeit with reduced efficiency. This residual incision is completely abolished upon shortening the disordered linker regions of MutL. These results indicate that roadblock bypass can be fully attributed to the long, disordered linker regions in MutL and establish that communication during MMR initiation occurs along the DNA backbone

    Simple calibration of TIR field depth using the supercoiling response of DNA.

    No full text
    International audienc

    A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence.

    No full text
    International audienceWe characterize in real time the composition and catalytic state of the initial Escherichia coli transcription-coupled repair (TCR) machinery by using correlative single-molecule methods. TCR initiates when RNA polymerase (RNAP) stalled by a lesion is displaced by the Mfd DNA translocase, thus giving repair components access to the damage. We previously used DNA nanomanipulation to obtain a nanomechanical readout of protein-DNA interactions during TCR initiation. Here we correlate this signal with simultaneous single-molecule fluorescence imaging of labeled components (RNAP, Mfd or RNA) to monitor the composition and localization of the complex. Displacement of stalled RNAP by Mfd results in loss of nascent RNA but not of RNAP, which remains associated with Mfd as a long-lived complex on the DNA. This complex translocates at ∌4 bp/s along the DNA, in a manner determined by the orientation of the stalled RNAP on the DNA
    corecore