15 research outputs found

    BASECOL2023 scientific content

    Get PDF
    Context. The global context of making numerous data produced by researchers available requires collecting and organising the data, assigning meaningful metadata, and presenting the data in a meaningful and homogeneous way. The BASECOL database, which collects inelastic rate coefficients for application to the interstellar medium and to circumstellar and cometary atmospheres, meets those requirements. Aims. We aim to present the scientific content of the BASECOL2023 edition. Methods. While the previous versions relied on finding rate coefficients in the literature, the current version is populated with published results sent by the producers of data. The paper presents the database, the type of data that can be found, the type of metadata that are used, and the Virtual Atomic and Molecular Data Centre (VAMDC) standards that are used for the metadata. Finally, we present the different datasets species by species. Results. As the BASECOL database, interconnected with the VAMDC e-infrastructure, uses the VAMDC standards, the collisional data can be extracted with tools using VAMDC standards and can be associated with spectroscopic data extracted from other VAMDC connected databases such as the Cologne database for molecular spectroscopy (CDMS), the jet propulsion laboratory molecular spectroscopy database (JPL), and the high-resolution transmission molecular absorption database (HITRAN)

    A Decade with VAMDC: Results and Ambitions

    Get PDF
    This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&M data from more than one database. Finally, we present our vision for the future of VAMDC

    A decade with vamdc: Results and ambitions

    Get PDF
    This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&amp;M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&amp;M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&amp;M data from more than one database. Finally, we present our vision for the future of VAMDC.</jats:p

    Herschel observations of ortho- and para-oxidaniumyl (H2O+) in spiral arm clouds toward Sagittarius B2(M) *,**

    Get PDF
    H2O+ has been observed in its ortho- and para- states toward the massive star forming core Sgr B2(M), located close to the Galactic center. The observations show absorption in all spiral arm clouds between the Sun and Sgr B2. The average o/p ratio of H2O+ in most velocity intervals is 4.8, which corresponds to a nuclear spin temperature of 21 K. The relationship of this spin temperature to the formation temperature and current physical temperature of the gas hosting H2O+ is discussed, but no firm conclusion is reached. In the velocity interval 0–60 km s-1, an ortho/para ratio of below unity is found, but if this is due to an artifact of contamination by other species or real is not clear

    Characterization of 5-fluorouracil microspheres for colonic delivery

    No full text
    The purpose of this investigation was to prepare and evaluate the colon-specific microspheres of 5-fluorouracil for the treatment of colon cancer. Core microspheres of alginate were prepared by the modified emulsification method in liquid paraffin and by cross-linking with calcium chloride. The core microspheres were coated with Eudragit S-100 by the solvent evaporation technique to prevent drug release in the stomach and small intestine. The microspheres were characterized by shape, size, surface morphology, size distribution, incorporation efficiency, and in vitro drug release studies. The outer surfaces of the core and coated microspheres, which were spherical in shape, were rough and smooth, respectively. The size of the core microspheres ranged from 22 to 55 μm, and the size of the coated microspheres ranged from 103 to 185 μm. The core microspheres sustained the drug release for 10 hours. The release studies of coated microspheres were performed in a pH progression medium mimicking the conditions of the gastrointestinal tract. Release was sustained for up to 20 hours in formulations with core microspheres to a Eudragit S-100 coat ratio of 1∶7, and there were no changes in the size, shape, drug content, differential scanning calorimetry thermogram, and in vitro drug release after storage at 40°C/75% relative humidity for 6 months

    Herschel observations of EXtra-Ordinary Sources (HEXOS) : Methanol as a probe of physical conditions in Orion KL

    No full text
    International audienceWe have examined methanol emission from Orion KL with the Herschel/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated Delta J = 0, K = -4 -> -3, v(t) = 0 Q branch, and includes 25 E-type and 2 A-type transitions. The 1061 GHz methanol band (observed in HIFI band 4b) is dominated by the Delta J = 0, K = 7 -> 6, v(t) = 0 Q branch transitions which are mostly blended. We have used the isolated E-type vt = 0 methanol transitions to explore the physical conditions in the molecular gas. With HIFI's high velocity resolution, the methanol emission contributed by different spatial components along the line of sight toward Orion KL (hot core, low velocity flow, and compact ridge) can be distinguished and studied separately. The isolated transitions detected in these bands cover a broad energy range (upper state energy ranging from 80 K to 900 K), which provides a unique probe of the thermal structure in each spatial component. The observations further show that the compact ridge is externally heated. These observations demonstrate the power of methanol lines as probes of the physical conditions in warm regions in close proximity to young stars
    corecore