3,705 research outputs found

    Factors associated to the use of psychotropc drugs by community-dwelling elderly in São Paulo City

    Get PDF
    RESUmo Os objetivos do estudo foram identificar a prevalência e os fatores associados ao uso de psicotrópicos entre os idosos do Município de São Paulo. Trata-se de um estudo transversal, de base populacional, cujos dados foram obtidos do Estudo Saúde, Bem-estar e Envelhecimento. A amostra foi constituída de 1.115 idosos de 65 anos ou mais, os quais foram entrevistados por meio de instrumento padronizado. Na aná-lise dos dados utilizou-se regressão logísti-ca univariada e múltipla stepwise forward e nível de significância de 5%. A prevalên-cia de uso de psicotrópicos foi 12,2% e os fatores associados foram sexo feminino (OR=3,04 IC95%=1,76-5,23) e polifarmácia RESUmEn Los objetivos del estudio fueron identificar la prevalencia y los factores relacionados al uso de psicotrópicos entre ancianos del São Paulo. Es un estudio trasversal, poblacional, cuyos datos fueron obtenidos del Estudio de Salud, Bien-estar y Envejecimiento. La muestra constituye de 1.115 ancianos de 65 años o más, los cuales fueron encuestados, por medio de instrumentos padronizados. El análisis de los datos fue utilizada una regresión logística univariado y múltiple, stepwise forward y nivel de significancia del 5%. La prevalencia de uso de psicotrópicos fue 12,2% y los factores asociados fueron sexo femenino (OR= 3,04 IC95%=1,76-5,23) y polifarmaci

    A Broad-Host-Range Tailocin from Burkholderia cenocepacia

    Get PDF
    ABSTRACT The Burkholderia cepacia complex (Bcc) consists of 20 closely related Gram-negative bacterial species that are significant pathogens for persons with cystic fibrosis (CF). Some Bcc strains are highly transmissible and resistant to multiple antibiotics, making infection difficult to treat. A tailocin (phage tail-like bacteriocin), designated BceTMilo, with a broad host range against members of the Bcc, was identified in B. cenocepacia strain BC0425. Sixty-eight percent of Bcc representing 10 species and 90% of non-Bcc Burkholderia strains tested were sensitive to BceTMilo. BceTMilo also showed killing activity against Pseudomonas aeruginosa PAO1 and derivatives. Liquid chromatography-mass spectrometry analysis of the major BceTMilo proteins was used to identify a 23-kb tailocin locus in a draft BC0425 genome. The BceTMilo locus was syntenic and highly similar to a 24.6-kb region on chromosome 1 of B. cenocepacia J2315 (BCAL0081 to BCAL0107). A close relationship and synteny were observed between BceTMilo and Burkholderia phage KL3 and, by extension, with paradigm temperate myophage P2. Deletion mutants in the gene cluster encoding enzymes for biosynthesis of lipopolysaccharide (LPS) in the indicator strain B. cenocepacia K56-2 conferred resistance to BceTMilo. Analysis of the defined mutants in LPS biosynthetic genes indicated that an α- d -glucose residue in the core oligosaccharide is the receptor for BceTMilo. IMPORTANCE BceTMilo, presented in this study, is a broad-host-range tailocin active against Burkholderia spp. As such, BceTMilo and related or modified tailocins have potential as bactericidal therapeutic agents against plant- and human-pathogenic Burkholderia . </jats:p

    Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar

    Full text link
    [EN] Antioxidant properties of commercial sugarcane-derived products were analysed to study their suitability for being used as functional ingredients. Cane honey, several jaggeries and several brown sugars were selected from the market and analysed in terms of physicochemical characteristics and antioxidant properties, and compared with white refined sugar (twelve products in total). Moisture, water activity, total soluble solids, pH, colour and sugar profile are reported. As for antioxidant properties, total phenols and flavonoid content, as well as antiradical ability (DPPH. and the TEAC-ABTS methods), are given. All sugarcane products contained phenols and flavonoids and exhibited in vitro antioxidant activity, determined by degree of refining. Among the alternatives analysed, jaggeries and cane honey showed the best antioxidant properties. Thermal treatment did not significantly affect the antioxidant capacity of sugarcane products, especially jaggeries. As sugar-rich products are widely consumed worldwide, the use of non-refined sugarcane derivatives in food formulation is encouraged.The authors would like to acknowledge the Universitat Politecnica de Valencia (Project PAID2010-2420) and Generalitat Valenciana Government (GV/2013/047) for financial support.Seguí Gil, L.; Calabuig Jimenez, L.; Betoret Valls, N.; Fito Maupoey, P. (2015). Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science and Technology. 50(12):2579-2588. doi:10.1111/ijfs.12926S257925885012Abbas, S. R., Sabir, S. M., Ahmad, S. D., Boligon, A. A., & Athayde, M. L. (2014). Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chemistry, 147, 10-16. doi:10.1016/j.foodchem.2013.09.113Amer, S., Na, K.-J., El-Abasy, M., Motobu, M., Koyama, Y., Koge, K., & Hirota, Y. (2004). Immunostimulating effects of sugar cane extract on X-ray radiation induced immunosuppression in the chicken. International Immunopharmacology, 4(1), 71-77. doi:10.1016/j.intimp.2003.10.006Bahorun, T., Luximon-Ramma, A., Crozier, A., & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84(12), 1553-1561. doi:10.1002/jsfa.1820Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5Cataldi, T. R. I., Margiotta, G., Iasi, L., Di Chio, B., Xiloyannis, C., & Bufo, S. A. (2000). Determination of Sugar Compounds in Olive Plant Extracts by Anion-Exchange Chromatography with Pulsed Amperometric Detection. Analytical Chemistry, 72(16), 3902-3907. doi:10.1021/ac000266oChan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172. doi:10.1016/j.foodchem.2008.07.090Dawidowicz, A. L., Wianowska, D., & Olszowy, M. (2012). On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chemistry, 131(3), 1037-1043. doi:10.1016/j.foodchem.2011.09.067Del Caro, A., Piga, A., Vacca, V., & Agabbio, M. (2004). Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chemistry, 84(1), 99-105. doi:10.1016/s0308-8146(03)00180-8Dittrich, R., El-massry, F., Kunz, K., Rinaldi, F., Peich, C. C., Beckmann, M. W., & Pischetsrieder, M. (2003). Maillard Reaction Products Inhibit Oxidation of Human Low-Density Lipoproteins in Vitro. Journal of Agricultural and Food Chemistry, 51(13), 3900-3904. doi:10.1021/jf026172sDowd, L. E. (1959). Spectrophotometric Determination of Quercetin. Analytical Chemistry, 31(7), 1184-1187. doi:10.1021/ac60151a033Maurício Duarte-Almeida, J., Novoa, A. V., Linares, A. F., Lajolo, F. M., & Inés Genovese, M. (2006). Antioxidant Activity of Phenolics Compounds From Sugar Cane (Saccharum officinarum L.) Juice. Plant Foods for Human Nutrition, 61(4), 187-192. doi:10.1007/s11130-006-0032-6Duarte-Almeida, J. M., Negri, G., Salatino, A., de Carvalho, J. E., & Lajolo, F. M. (2007). Antiproliferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum) juice. Phytochemistry, 68(8), 1165-1171. doi:10.1016/j.phytochem.2007.01.015EL-ABASY, M., MOTOBU, M., NA, K.-J., SHIMURA, K., NAKAMURA, K., KOGE, K., … HIROTA, Y. (2003). Protective Effects of Sugar Cane Extracts (SCE) on Eimeria tenella Infection in Chickens. Journal of Veterinary Medical Science, 65(8), 865-871. doi:10.1292/jvms.65.865El-Abasy, M., Motobu, M., Nakamura, K., Koge, K., Onodera, T., Vainio, O., … Hirota, Y. (2004). Preventive and therapeutic effects of sugar cane extract on cyclophosphamide-induced immunosuppression in chickens. International Immunopharmacology, 4(8), 983-990. doi:10.1016/j.intimp.2004.01.019Feng, S., Luo, Z., Zhang, Y., Zhong, Z., & Lu, B. (2014). Phytochemical contents and antioxidant capacities of different parts of two sugarcane (Saccharum officinarum L.) cultivars. Food Chemistry, 151, 452-458. doi:10.1016/j.foodchem.2013.11.057Harish Nayaka, M. A., Sathisha, U. V., Manohar, M. P., Chandrashekar, K. B., & Dharmesh, S. M. (2009). Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chemistry, 115(1), 113-118. doi:10.1016/j.foodchem.2008.11.067Kadam, U. S., Ghosh, S. B., De, S., Suprasanna, P., Devasagayam, T. P. A., & Bapat, V. A. (2008). Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chemistry, 106(3), 1154-1160. doi:10.1016/j.foodchem.2007.07.066KOGE, K., NAGAI, Y., MIZUTANI, T., SUZUKI, M., & ARAKI, S. (2001). Inhibitory Effects of Sugar Cane Extracts on Liver Injuries in Mice. NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 48(4), 231-237. doi:10.3136/nskkk.48.231Kumazawa, S., Hamasaka, T., & Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chemistry, 84(3), 329-339. doi:10.1016/s0308-8146(03)00216-4Lin, J.-Y., & Tang, C.-Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140-147. doi:10.1016/j.foodchem.2006.01.014LO, D.-Y., CHEN, T.-H., CHIEN, M.-S., KOGE, K., HOSONO, A., KAMINOGAWA, S., & LEE, W.-C. (2005). Effects of Sugar Cane Extract on the Modulation of Immunity in Pigs. Journal of Veterinary Medical Science, 67(6), 591-597. doi:10.1292/jvms.67.591Luximon-Ramma, A., Bahorun, T., Soobrattee, M. A., & Aruoma, O. I. (2002). Antioxidant Activities of Phenolic, Proanthocyanidin, and Flavonoid Components in Extracts ofCassia fistula. Journal of Agricultural and Food Chemistry, 50(18), 5042-5047. doi:10.1021/jf0201172Motobu, M., Amer, S., Koyama, Y., Hikosaka, K., Sameshima, T., Yamada, M., … Hirota, Y. (2006). Protective effects of sugar cane extract on endotoxic shock in mice. Phytotherapy Research, 20(5), 359-363. doi:10.1002/ptr.1860Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. doi:10.1021/jf051960dPayet, B., Shum Cheong Sing, A., & Smadja, J. (2005). Assessment of Antioxidant Activity of Cane Brown Sugars by ABTS and DPPH Radical Scavenging Assays:  Determination of Their Polyphenolic and Volatile Constituents. Journal of Agricultural and Food Chemistry, 53(26), 10074-10079. doi:10.1021/jf0517703Phillips, K. M., Carlsen, M. H., & Blomhoff, R. (2009). Total Antioxidant Content of Alternatives to Refined Sugar. Journal of the American Dietetic Association, 109(1), 64-71. doi:10.1016/j.jada.2008.10.014Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3Vijaya Kumar Reddy, C., Sreeramulu, D., & Raghunath, M. (2010). Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Research International, 43(1), 285-288. doi:10.1016/j.foodres.2009.10.006Sendra, J. M., Sentandreu, E., & Navarro, J. L. (2006). Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) for determination of the antiradical activity of citrus juices. European Food Research and Technology, 223(5), 615-624. doi:10.1007/s00217-005-0243-3Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1Varzakas, T., & Chryssanthopoulos, C. (2012). Nutritional and Health Aspects of Sweeteners. Sweeteners, 329-366. doi:10.1201/b12065-12Wojtczak, M., Antczak, A., & Lisik, K. (2013). Contamination of commercial cane sugars by some organic acids and some inorganic anions. Food Chemistry, 136(1), 193-198. doi:10.1016/j.foodchem.2012.07.036Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609-614. doi:10.1021/jf020782aYAMAGUCHI, T., MIZOBUCHI, T., KAJIKAWA, R., KAWASHIMA, H., MIYABE, F., TERAO, J., … MATOBA, T. (2001). Radical-Scavenging Activity of Vegetables and the Effect of Coking on Their Activity. Food Science and Technology Research, 7(3), 250-257. doi:10.3136/fstr.7.250Yamauchi, K., Buwjoom, T., Koge, K., & Ebashi, T. (2006). Histological Intestinal Recovery in Chickens Refed Dietary Sugar Cane Extract. Poultry Science, 85(4), 645-651. doi:10.1093/ps/85.4.645YAO, L. H., JIANG, Y. M., SHI, J., TOM�S-BARBER�N, F. A., DATTA, N., SINGANUSONG, R., & CHEN, S. S. (2004). Flavonoids in Food and Their Health Benefits. Plant Foods for Human Nutrition, 59(3), 113-122. doi:10.1007/s11130-004-0049-

    Efficient synthesis of pyrene-1-carbothioamides and carboxamides. Tunable solid-state fluorescence of pyrene-1-carboxamides

    Get PDF
    Pyrene reacts with potassium thiocyanate and organic isothiocyanates in the presence of trifluoromethanesulfonic acid to afford primary and secondary pyrene-1-carbothioamides in high yields. These compounds were efficiently oxidatively desulfurized with Oxone® to the corresponding carboxamides. The amides display solid-state fluorescence with quantum efficiencies up to 62%, originating from monomers, aggregates (such as preformed dimers), and/or excimers, depending on the substituent at the nitrogen atom. Single crystal X-ray diffraction characterization of one highly emissive compound supports this assumption.Publikacja w ramach programu Royal Society of Chemistry "Gold for Gold" 2014 finansowanego przez Uniwersytet Łódzki
    corecore