56 research outputs found

    Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner

    No full text
    The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia

    Giochi da senatori

    Get PDF
    Megalencephalic leucoencephalopathy with subcortical cysts is a genetic brain disorder with onset in early childhood. Affected infants develop macrocephaly within the first year of life, after several years followed by slowly progressive, incapacitating cerebellar ataxia and spasticity. From early on, magnetic resonance imaging shows diffuse signal abnormality and swelling of the cerebral white matter, with evidence of highly increased white matter water content. In most patients, the disease is caused by mutations in the gene MLC1, which encodes a plasma membrane protein almost exclusively expressed in brain and at lower levels in leucocytes. Within the brain, MLC1 is mainly located in astrocyte-astrocyte junctions adjacent to the blood-brain and cereborspinal fluid-brain barriers. Thus far, the function of MLC1 has remained unknown. We tested the hypothesis that MLC1 mutations cause a defect in ion currents involved in water and ion homeostasis, resulting in cerebral white matter oedema. Using whole-cell patch clamp studies we demonstrated an association between MLC1 expression and anion channel activity in different cell types, most importantly astrocytes. The currents were absent in chloride-free medium and in cells with disease-causing MLC1 mutations. MLC1-dependent currents were greatly enhanced by hypotonic pretreatment causing cell swelling, while ion channel blockers, including Tamoxifen, abolished the currents. Down regulation of endogenous MLC1 expression in astrocytes by small interfering RNA greatly reduced the activity of this channel, which was rescued by overexpression of normal MLC1. The current-voltage relationship and the pharmacological profiles of the currents indicated that the channel activated by MLC1 expression is a volume-regulated anion channel. Such channels are involved in regulatory volume decrease. We showed that regulatory volume decrease was hampered in lymphoblasts from patients with megalencephalic leucoencephalopathy. A similar trend was observed in astrocytes with decreased MLC1 expression; this effect was rescued by overexpression of normal MLC1. In the present study, we show that absence or mutations of the MLC1 protein negatively impact both volume-regulated anion channel activity and regulatory volume decrease, indicating that megalencephalic leucoencephalopathy is caused by a disturbance of cell volume regulation mediated by chloride transport. © 2011 The Author

    Легочная гипертензия при диастолической дисфункции левого желудочка у больных с ишемической кардиомиопатией

    Get PDF
    На основании данных эхокардиографического исследования выявлена взаимосвязь между степенью легочной гипертензии и тяжестью диастолической дисфункции левого желудочка у больных с ишемической кардиомиопатией. Показано, что рестриктиное наполнение левого желудочка наблюдается в основном при выраженной легочной гипертензии.The findings of echocardiography were used to reveal interrelation between the degree of pulmonary hypertension and severity of diastolic dysfunction of the left ventricle in patients with ischemic cardiomyopathy. Restrictive filling of the left ventricle is shown to be observed in marked pulmonary hypertension

    Mutations in Potassium Channel KCND3 Cause Spinocerebellar Ataxia Type 19

    Get PDF
    OBJECTIVE: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21. METHODS: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.3) using high-resolution melting. SCA19 brain autopsy material was evaluated, and in vitro experiments using ectopic expression of wild-type and mutant Kv4.3 were used to study protein localization, stability, and channel activity by patch-clamping. RESULTS: We detected a T352P mutation in the third extracellular loop of the voltage-gated potassium channel KCND3 that cosegregated with the disease phenotype in our original family. We identified 2 more novel missense mutations in the channel pore (M373I) and the S6 transmembrane domain (S390N) in 2 other ataxia families. T352P cerebellar autopsy material showed severe Purkinje cell degeneration, with abnormal intracellular accumulation and reduced protein levels of Kv4.3 in their soma. Ectopic expression of all mutant proteins in HeLa cells revealed retention in the endoplasmic reticulum and enhanced protein instability, in contrast to wild-type Kv4.3 that was localized on the plasma membrane. The regulatory β subunit Kv channel interacting protein 2 was able to rescue the membrane localization and the stability of 2 of the 3 mutant Kv4.3 complexes. However, this either did not restore the channel function of the membrane-located mutant Kv4.3 complexes or restored it only partially. INTERPRETATION: KCND3 mutations cause SCA19 by impaired protein maturation and/or reduced channel function

    Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner

    Get PDF
    The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia

    Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms

    Get PDF
    Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies

    Non-additive interaction between genotypes: implications for competitive fitness assays

    No full text
    Competitive fitness assays are widely used in evolutionary biology and typically rely on a reference strain to compare different focal genotypes. This approach implicitly relies on the absence of interaction between the competing genotypes. In other words, the performance of the reference strain must not depend on the competitor. This report scrutinized this assumption by competing diverged Drosophila simulans populations against a common reference strain. We detected strong evidence for interaction between the competing genotypes: 1) Frequency-dependent selection was common with opposite effects in genetically diverged populations. 2) Temporal heterogeneity of fitness estimates, which can be partially attributed to a competitor-specific delay in the eclosion of the reference strain. We propose that this inconsistent behavior of the reference strain can be considered a specific case of a genotype x environment interaction. Focal populations could modify the environment of the reference strain, either indirectly by altering the microbiome composition and food availability or directly by genotype-specific cannibalism. Our results provide new insights into the interaction of diverged genotypes and have important implications for the interpretation of competitive fitness assays

    Non‐additive effects between genotypes: Implications for competitive fitness assays

    No full text
    Abstract Competitive fitness assays are widely used in evolutionary biology and typically rely on a reference strain to compare different focal genotypes. This approach implicitly relies on the absence of interaction between the competing genotypes. In other words, the performance of the reference strain must not depend on the competitor. This report scrutinized this assumption by competing diverged Drosophila simulans populations against a common reference strain. We detected strong evidence for interaction between the competing genotypes: (1) Frequency‐dependent selection was common with opposite effects in genetically diverged populations. (2) Temporal heterogeneity of fitness estimates, which can be partially attributed to a competitor‐specific delay in the eclosion of the reference strain. We propose that this inconsistent behavior of the reference strain can be considered a specific case of a genotype × environment interaction. Focal populations could modify the environment of the reference strain, either indirectly by altering the microbiome composition and food availability or directly by genotype‐specific cannibalism. Our results provide new insights into the interaction of diverged genotypes and have important implications for the interpretation of competitive fitness assays
    corecore