10 research outputs found

    CamTrapAsia: A dataset of tropical forest vertebrate communities from 239 camera trapping studies

    Get PDF
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land‐use change and hunting, the latter frequently referred as “defaunation.” This is especially true in tropical Asia where there is extensive land‐use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non‐invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera‐derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large‐scale pressence‐only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10‐, 20‐, and 30‐km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single‐species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data

    Spatial and temporal analysis of leopards (Panthera pardus), their prey and tigers (Panthera tigris) in Huai Kha Khaeng Wildlife Sanctuary, Thailand

    No full text
    Despite their extensive distribution globally, recent reports indicate leopards are declining, especially in Southeast Asia. To support conservation efforts we analyzed the behavioral interactions between leopards (Panthera pardus), their prey, and tigers to determine if leopards fine-tune their activity to maximize contact with four prey species (sambar; wild boar; barking deer; banteng) and avoid tigers and if prey alter their temporal activity in response to variation in their relative abundance ratio with leopards. A lower density of sambar in the northern part of our study area and a lower density of wild boar and a higher density of tigers in the southern part allowed us to examine fine-grained differences in the behavior of leopards and their prey. We used camera trap data to investigate spatial and temporal overlap. Differences in tiger relative abundance did not appear to impact the temporal activity of leopards. Leopards had similar cathemeral activity at all sites with highest activity at dawn and dusk. This behavior appears to be a compromise to provide access to diurnal wild boar and barking deer and nocturnal sambar and banteng. Sambar showed higher temporal avoidance of leopards in the north where its RAI was lowest; in contrast, wild boar had the highest temporal avoidance in the south where its density was lowest. This is the first study in Southeast Asia to quantify spatial and temporal interactions between the leopard, its primary ungulate prey, and the tiger. It provides new insights for conserving this declining subspecies

    Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement

    No full text
    Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624–1026 km<sup>2</sup> with 137–200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km<sup>2</sup>, abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture–recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82–90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade

    Data from: Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region

    No full text
    The swamp type of the Asian water buffalo is assumed to have been domesticated by about 4000 years BP, following the introduction of rice cultivation. Previous localizations of the domestication site were based on mitochondrial DNA (mtDNA) variation within China, accounting only for the maternal lineage. We carried out a comprehensive sampling of China, Taiwan, Vietnam, Laos, Thailand, Nepal and Bangladesh and sequenced the mtDNA Cytochrome b gene and control region and the Y-chromosomal ZFY, SRY and DBY sequences. Swamp buffalo has a higher diversity of both maternal and paternal lineages than river buffalo, with also a remarkable contrast between a weak phylogeographic structure of river buffalo and a strong geographic differentiation of swamp buffalo. The highest diversity of the swamp buffalo maternal lineages was found in South China and North Indochina on both banks of the Mekong River, while the highest diversity in paternal lineages was in the China-Indochina border region. We propose that domestication in this region was later followed by introgressive capture of wild cows west of the Mekong. Migration to the north followed the Yangtze valley as well as a more eastern route, but also involved translocations of both cows and bulls over large distances with a minor influence of river buffaloes in recent decades. Bayesian analyses of various migration models also supported domestication in the China-Indochina border region. Coalescence analysis yielded consistent estimates for the expansion of the major swamp buffalo haplogroups with a credibility interval of 900 to 3,900 years BP. The spatial differentiation of mtDNA and Y-chromosomal haplotype distributions indicates a lack of gene flow between established populations that is unprecedented in livestock

    Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region

    No full text
    The swamp type of the Asian water buffalo is assumed to have been domesticated by about 4000 years BP, following the introduction of rice cultivation. Previous localizations of the domestication site were based on mitochondrial DNA (mtDNA) variation within China, accounting only for the maternal lineage. We carried out a comprehensive sampling of China, Taiwan, Vietnam, Laos, Thailand, Nepal and Bangladesh and sequenced the mtDNA Cytochrome b gene and control region and the Y-chromosomal ZFY, SRY and DBY sequences. Swamp buffalo has a higher diversity of both maternal and paternal lineages than river buffalo, with also a remarkable contrast between a weak phylogeographic structure of river buffalo and a strong geographic differentiation of swamp buffalo. The highest diversity of the swamp buffalo maternal lineages was found in south China and north Indochina on both banks of the Mekong River, while the highest diversity in paternal lineages was in the China/Indochina border region. We propose that domestication in this region was later followed by introgressive capture of wild cows west of the Mekong. Migration to the north followed the Yangtze valley as well as a more eastern route, but also involved translocations of both cows and bulls over large distances with a minor influence of river buffaloes in recent decades. Bayesian analyses of various migration models also supported domestication in the China/Indochina border region. Coalescence analysis yielded consistent estimates for the expansion of the major swamp buffalo haplogroups with a credibility interval of 900 to 3900 years BP. The spatial differentiation of mtDNA and Y-chromosomal haplotype distributions indicates a lack of gene flow between established populations that is unprecedented in livestock

    Cryptic mammals caught on camera: assessing the utility of range wide camera trap data for conserving the endangered Asian tapir

    No full text
    The loss and fragmentation of substantial areas of forest habitat, in combination with rampant hunting, has pushed many of Southeast Asia's megafauna species to the verge of extinction. However, the extent of these declines is rarely quantified, thereby weakening lessons learned and species-based management. This need not be the case as a proliferation of camera trap surveys for large-bodied mammals across Southeast Asia, which use a standardized sampling technique, presents a rich yet under-utilized wildlife data set. Furthermore, advances in statistical techniques for assessing species distribution provide new opportunities for conducting comparative regional analyses. Here, we focus on one of Southeast Asia's least known species of megafauna, the Endangered Asian tapir (Tapirus indicus), to investigate the performance of a camera trap-based spatial modeling approach in conducting a range-wide species assessment. Detection data were collectively collated from 52,904 trap days and 1,128 camera traps located across 19 study areas drawn from the Asian tapir's entire range. Considerable variation in tapir occurrence was found between study areas in: Malaysia (0.52–0.77); Sumatra, Indonesia (0.12–0.90); Thailand (0.00–0.65); and, Myanmar (0.00–0.26), with generally good levels of estimate precision. Although tapirs were widespread (recorded in 17 of the 19 study areas), their occurrence was significantly and negatively correlated with human disturbance. Thus, this study extends the previously known applicability of camera traps to include a threatened and cryptic species by identifying where and how tapirs persist (including new records of occurrence), where future surveys should be conducted and providing a benchmark for measuring future conservation management efforts
    corecore