266 research outputs found

    Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses

    Get PDF
    Members of the family of 70-kD heat shock proteins (HSP70 s) play various stress-protective roles in plants. In this study, a wheat HSP70 gene was isolated from a suppression subtractive hybridization (SSH) cDNA library of wheat leaves infected by Puccinia striiformis f. sp. tritici. The gene, that was designated as TaHSC70, was predicted to encode a protein of 690 amino acids, with a molecular mass of 73.54 KDa and a pI of 5.01. Further analysis revealed the presence of a conserved signature that is characteristic for HSP70s and phylogenetic analysis demonstrated that TaHSC70 is a homolog of chloroplast HSP70s. TaHSC70 mRNA was present in leaves of both green and etiolated wheat seedlings and in stems and roots. The transcript level in roots was approximately threefold less than in leaves but light–dark treatment did not charge TaHSC70 expression. Following heat shock of wheat seedlings at 40°C, TaHSC70 expression increased in leaves of etiolated seedlings but remained stable at the same level in green seedlings. In addition, TaHSC70 was differentially expressed during an incompatible and compatible interaction with wheat-stripe rust, and there was a transient increase in expression upon treatment with methyl jasmonate (MeJA) treatment. Salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) treatments had no influence on TaHSC70 expression. These results suggest that TaHSC70 plays a role in stress-related responses, and in defense responses elicited by infection with stripe rust fungus and does so via a JA-dependent signal transduction pathway

    Iron isotope compositions of coexisting sulfide and silicate minerals in Sudbury-type ores from the Jinchuan Ni-Cu- sulfide deposit: A perspective on possible core-mantle iron isotope fractionation

    Get PDF
    Many studies have shown that the average iron (Fe) isotope compositions of mantle-derived rocks, mantle peridotite and model mantle are close to those of chondrites. Therefore, it is considered that chondrite values represent the bulk Earth Fe isotope composition. However, this is a brave assumption because nearly 90% Fe of the earth is in the core, whose Fe isotope composition is unknown, but is required to construct bulk earth Fe isotope composition. We approach the problem by assuming that the earth’s core separation can be approximated in terms of the Sudbury-type Ni-Cu sulfide mineralization, where sulfide-saturated mafic magmas segregate into immiscible sulfide liquid and silicate liquid. Their density/buoyancy controlled stratification and solidification produced net-textured ores above massive ores and below disseminated ores. The coexisting sulfide minerals (pyrrhotite (Po) > pentlandite (Pn) > chalcopyrite (Cp)) and silicate minerals (olivine (Ol) > orthopyroxene (Opx) > clinopyroxene (Cpx)) are expected to hold messages on Fe isotope fractionation between the two liquids before their solidification. We studied the net-textured ores of the Sudbury-type Jinchuan Ni-Cu sulfide deposit. The sulfide minerals show varying δ56Fe values (-1.37 ~ -0.74‰ (Po) < 0.09 ~ 0.56‰ (Cp) < 0.53 ~ 1.05‰ (Pn), but silicate minerals (Ol, Opx, Cpx) have δ56Fe values close to chondrites (δ56Fe = -0.01±0.01‰). The heavy δ56Fe value (0.52 ~ 0.60‰) of serpentines may reflect Fe isotopes exchange with the coexisting pyrrhotite with light δ56Fe. We ob- tained an equilibrium fractionation factor of Δ56Fesilicate-sulfide = ~ 0.51‰ between reconstructed silicate liquid (δ56Fe = ~ 0.21‰) and sulfide liquid (δ56Fe = ~ -0.30‰), or Δ56Fesilicate-sulfide = ~ 0.36‰ between the weighted mean bulk-silicate minerals (δ56Fe[0.70ol,0.25opx,0.05cpx] = 0.06‰) with weighted mean bulk- sulfide minerals (δ56Fe = ~ -0.30‰). Our study indicates that significant Fe isotope fractionation does take place between silicate and sulfide liquids during the Sudbury-type sulfide mineralization. We hypothesize that significant iron isotope fractionation must have taken place during core-mantle segregation, and the bulk earth may have lighter Fe isotope composition than chondrites although Fe isotope analysis on experimental sulfide-silicate liquids produced under the varying mantle depth conditions is needed to test our results. We advocate the importance of further research on the subject. Given the close Fe-Ni association in the magmatic mineralization and the majority of Earth’s Ni is also in the core, we infer that Ni isotope fractionation must also have taken place during the core separation that needs attention

    Creating Bell states and decoherence effects in quantum dots system

    Full text link
    We show how to improve the efficiency for preparing Bell states in coupled two quantum dots system. A measurement to the state of driven quantum laser field leads to wave function collapse. This results in highly efficiency preparation of Bell states. The effect of decoherence on the efficiency of generating Bell states is also discussed in this paper. The results show that the decoherence does not affect the relative weight of 00>|00> and 11>|11> in the output state, but the efficiency of finding Bell states.Comment: 4 pages, 2figures, corrected some typo

    Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state

    Get PDF
    We present a protocol for performing entanglement swapping with intense pulsed beams. In a first step, the generation of amplitude correlations between two systems that have never interacted directly is demonstrated. This is verified in direct detection with electronic modulation of the detected photocurrents. The measured correlations are better than expected from a classical reconstruction scheme. In the entanglement swapping process, a four--partite entangled state is generated. We prove experimentally that the amplitudes of the four optical modes are quantum correlated 3 dB below shot noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor inconsistency in notation removed; format for units in the figures change

    International survey for assessing COVID-19’s impact on fear and health: study protocol

    Get PDF
    Introduction COVID-19, caused by the SARS-CoV-2, has been one of the most highly contagious and rapidly spreading virus outbreak. The pandemic not only has catastrophic impacts on physical health and economy around the world, but also the psychological well-being of individuals, communities and society. The psychological and social impacts of the COVID-19 pandemic internationally have not been well described. There is a lack of international study assessing health-related impacts of the COVID-19 pandemic, especially on the degree to which individuals are fearful of the pandemic. Therefore, this study aims to (1) assess the health-related impact of the COVID-19 pandemic in community-dwelling individuals around the world; (2) determine the extent various communities are fearful of COVID-19 and (3) identify perceived needs of the population to prepare for potential future pandemics. Methods and analysis This global study involves 30 countries. For each country, we target at least 500 subjects aged 18 years or above. The questionnaires will be available online and in local languages. The questionnaires include assessment of the health impacts of COVID-19, perceived importance of future preparation for the pandemic, fear, lifestyles, sociodemographics, COVID-19-related knowledge, e-health literacy, out-of-control scale and the Patient Health Questionnaire-4. Descriptive statistics will be used to describe participants’ characteristics, perceptions on the health-related impacts of COVID-19, fear, anxiety and depression, lifestyles, COVID-19 knowledge, e-health literacy and other measures. Univariable and multivariable regression models will be used to assess the associations of covariates on the outcomes. Ethics and dissemination The study has been reviewed and approved by the local ethics committees in participating countries, where local ethics approval is needed. The results will be actively disseminated. This study aims to map an international perspective and comparison for future preparation in a pandemic

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
    corecore