3,048 research outputs found

    Studies towards the Total Asymmetric Synthesis of the Pentacyclic Indole Alkaloid Arboflorine: Asymmetric Synthesis of a Key Intermediate

    Get PDF
    The synthesis of a plausible key intermediate for a biomimetic asymmetric synthesis of indole alkaloid arboflorine is described. The method featured the use of Ellman's sulfinamide chemistry for the establishment of the first chiral center, and the Polonovski-Potier reaction for the formation of the alpha-aminonitrile moiety.NSF of China[20832005]; NFFTBS[J1030415]; National Basic Research Program (973 Program) of China[2010CB833200

    Modeling Multi-wavelength Pulse Profiles of Millisecond Pulsar PSR B1821-24

    Full text link
    PSR B1821-24 is a solitary millisecond pulsar (MSP) which radiates multi-wavelength pulsed photons. It has complex radio, X-ray and γ\gamma-ray pulse profiles with distinct peak phase-separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with suitable magnetic inclination angle (α=40\alpha=40^\circ) and viewing angle (ζ=75\zeta=75^\circ), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak is originated from the core gap region at high altitudes, and the other two radio peaks are originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ\gamma-ray wavebands are fundamentally originated from annular gap region, while the γ\gamma-ray emission generated from the core gap region contributes somewhat to the first γ\gamma-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821-24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.Comment: Accepted for publication in Ap

    The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme

    Get PDF
    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system

    Preparation and characterisation of manganese and iron compounds as potential control-release foliar fertilisers

    Get PDF
    Nanoscale crystals containing manganese and iron as potential foliar fertilizers have been further investigated with the experience accumulated from previous research on potential zinc foliar fertilizer. Compared to Zn(II), Mn(II) and Fe(II) are easily oxidisable in ambient environment, adding stricter criteria to compound selection to prevent oxidation. Adoption of phosphate buffer saline system and chelate have been proposed as the solution and extensively assessed in this paper. After quick co-precipitation, as-prepared crystals were characterised via XRD, FTIR, SEM, TEM, elemental analysis, and AAS to confirm the compositions and two-dimensional nanoscale morphology and assess the nutrient ion release and aqueous stability. In particular, the available Mn concentration in manganese ammonium phosphate and manganese oxalate suspensions was similar to 10 and similar to 110 mg/L, respectively. In comparison, ferrous ammonium phosphate and ferrous oxalate suspensions contained similar to 10 and similar to 30 mg/L of iron ions, respectively. Therefore, these suspensions can all be used as long-term foliar fertilizers for the correction of Mn and Fe deficiency in plants

    On the bistable zone of milling processes

    Get PDF
    LRR-RLK genes identified in Physcomitrella patens and Selaginella moellendorffii. (XLS 4566 kb

    Study on the Lowest Energy Density of Welding Heat Source Required by Fusion Welding Metal

    Get PDF
    AbstractWelding is a common metal-processing method, which uses heating or press or both, at the same time, uses or disuses filled composites to achieve the atomic binding of workpieces. The basic welding methods are usually divided into three classes according to the conjunct property of weld metal, namely fusion welding, press welding and braze welding[1,2]. Powder composite welding rod is constituted with powder and termites, which belongs to fusion welding[3]. In order to make sure that the energy of this welding rod can achieve the requirement of fusion welding, so the lowest energy density required by fusing melt should be determined firstly

    MARTE/pCCSL: Modeling and Refining Stochastic Behaviors of CPSs with Probabilistic Logical Clocks

    Get PDF
    Best Paper AwardInternational audienceCyber-Physical Systems (CPSs) are networks of heterogeneous embedded systems immersed within a physical environment. Several ad-hoc frameworks and mathematical models have been studied to deal with challenging issues raised by CPSs. In this paper, we explore a more standard-based approach that relies on SysML/MARTE to capture different aspects of CPSs, including structure, behaviors, clock constraints, and non-functional properties. The novelty of our work lies in the use of logical clocks and MARTE/CCSL to drive and coordinate different models. Meanwhile, to capture stochastic behaviors of CPSs, we propose an extension of CCSL, called pCCSL, where logical clocks are adorned with stochastic properties. Possible variants are explored using Statistical Model Checking (SMC) via a transformation from the MARTE/pCCSL models into Stochastic Hybrid Automata. The whole process is illustrated through a case study of energy-aware building, in which the system is modeled by SysML/MARTE/pCCSL and different variants are explored through SMC to help expose the best alternative solutions

    Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies

    Get PDF
    Poly(1-amino-5-chloroanthraquinone) (PACA) nanofibrils were applied as novel nanoadsorbents for highly toxic mercury removal from aqueous solutions. A series of batch adsorption experiments were conducted to study the effect of adsorbent dose, pH, contact time, and metal concentration on Hg(II) uptake by PACA nanofibrils. Kinetic data indicated that the adsorption process of PACA nanofibrils for Hg(II) achieved equilibrium within 2 h following a pseudo-second-order rate equation. The adsorption mechanism of PACA nanofibrils for Hg(II) was investigated by Fourier transform-infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption isotherm of Hg(II) fitted well the Langmuir model, exhibiting superb adsorption capacity of 3.846 mmol of metal per gram of adsorbent. Lastly, we found out that the as-synthesized PACA nanofibrils are efficient in Hg(II) removal from real wastewater. Furthermore, five consecutive adsorption-desorption cycles demonstrated that the PACA nanofibrils were suitable for repeated use without considerable changes in the adsorption capacity

    Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies

    Get PDF
    Poly(1-amino-5-chloroanthraquinone) (PACA) nanofibrils were applied as novel nanoadsorbents for highly toxic mercury removal from aqueous solutions. A series of batch adsorption experiments were conducted to study the effect of adsorbent dose, pH, contact time, and metal concentration on Hg(II) uptake by PACA nanofibrils. Kinetic data indicated that the adsorption process of PACA nanofibrils for Hg(II) achieved equilibrium within 2 h following a pseudo-second-order rate equation. The adsorption mechanism of PACA nanofibrils for Hg(II) was investigated by Fourier transform-infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption isotherm of Hg(II) fitted well the Langmuir model, exhibiting superb adsorption capacity of 3.846 mmol of metal per gram of adsorbent. Lastly, we found out that the as-synthesized PACA nanofibrils are efficient in Hg(II) removal from real wastewater. Furthermore, five consecutive adsorption-desorption cycles demonstrated that the PACA nanofibrils were suitable for repeated use without considerable changes in the adsorption capacity
    corecore