Studies towards the Total Asymmetric Synthesis of the Pentacyclic Indole Alkaloid Arboflorine: Asymmetric Synthesis of a Key Intermediate

Yu Du, ${ }^{a}$ Hui-Ying Huang, ${ }^{\text {b }}$ Hui Liu, ${ }^{a}$ Yuan-Ping Ruan, ${ }^{a}$ Pei-Qiang Huang*a
${ }^{\text {a }}$ Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. of China Fax +86(592)2186400; E-mail: pqhuang@ xmu.edu.cn
${ }^{\text {b }}$ School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P. R. of China
Received 27 November 2010

Abstract

The synthesis of a plausible key intermediate for a biomimetic asymmetric synthesis of indole alkaloid arboflorine is described. The method featured the use of Ellman's sulfinamide chemistry for the establishment of the first chiral center, and the Polonovski-Potier reaction for the formation of the α-aminonitrile moiety.

Key words: indole alkaloids, biogenetic pathway, intermediate, Polonovski-Potier reaction, Ellman's sulfinamide

Indole alkaloids are a class of natural products widely distributed in plants that exhibit structural diversity and significant biological activities. ${ }^{1}$ In 2006, Kam and coworkers reported the isolation and structure elucidation of arboflorine (1) as a minor alkaloid from the stem bark of the Malayan Kopsia arborea. ${ }^{2}$ A notable feature of this new alkaloid resides in that it represents a new subclass of monoterpenoid indoles with a novel pentacyclic carbon skeleton. Moreover, the incorporation of a third nitrogen atom embedded within a tryptamine-secologanin-derived monoterpenoid indole is also unusual (Figure 1).

arboflorine (1)
Figure 1 Structure of arboflorine

In continuation of our interest in the asymmetric synthesis of bioactive alkaloids, ${ }^{3}$ in particular piperidines ${ }^{4}$ and 2piperidinones, ${ }^{5}$ we have embarked on the asymmetric synthesis of arboflorine (1), and the preliminary results on the construction of a key intermediate are presented herein.
Our approach is based on the possible biogenetic pathway proposed by Kam and co-workers, ${ }^{2}$ which highlighted the cyclization of the key intermediate 2 (Scheme 1). In our retrosynthetic analysis showed in Scheme 2, compound 7 was designed as a precursor of the key intermediate $\mathbf{6}$, which is similar to the proposed biogenetic intermediate
2. The α-aminonitrile 7 was envisioned to be prepared from piperideine $\mathbf{8}$ by Li's cross-dehydrogenative-coupling reaction (CDC) ${ }^{6}$ or the Polonovski-Potier reaction. ${ }^{7}$ Compound 8, in turn, could be accessible from chiral amine 9 and indole derivative 10. Chiral amine 9 could be

Scheme 1 Possible biogenetic pathway to 1 (in part) suggested by Kam and co-workers

Scheme 2 Retrosynthetic analysis of arboflorine
synthesized by chiral directing reduction of Ellman's sulfinamide. ${ }^{8,9}$

The synthesis started with the preparation of the protected (Rs, R)- N -tert-butanesulfinyl amine 9 by a known procedure (Scheme 3). ${ }^{9} \mathrm{Ti}(\mathrm{OEt})_{4}$-mediated ${ }^{9,10}$ condensation of 3-acetylpyridine (11) with Ellman's (R)-sulfinamide $\mathbf{1 2}^{8}$ afforded sulfinimine 13 in 88% yield. Reduction of sulfinimine $\mathbf{1 3}$ with DIBAL-H in THF at $-78{ }^{\circ} \mathrm{C}^{9}$ produced the desired compound 9 in 89% yield.

Scheme 3 Synthesis of compound 9

The synthesis of segment $\mathbf{1 0}$ is outlined in Scheme 4, which started with 2-(indol-3-yl)acetic acid (14). Reduction of 2-(indol-3-yl)acetic acid (14) with lithium aluminum hydride in THF gave the corresponding alcohol 15 in 96% yield, which was protected (TBSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 16 in 98% yield.

Scheme 4 Synthesis of compound 10

Oxidative conversion of 3 -substituted indole 16 into chloroindolenine 17 and use of this compound for the functionalization at the carbon α to nitrogen by Kuehne's method ${ }^{11,12}$ (t - $\mathrm{BuOCl}, \mathrm{Et}_{3} \mathrm{~N}$, THF; ZnCl_{2}, lithium ethyl tert-butyl malonate) provided compound 18 in 94% yield. Successive treatment of compound $\mathbf{1 8}$ with trifluoroacetic acid and potassium carbonate gave the desilylated and de-
carboxylated product 19 in an overall yield of 86%. Treatment of indole-alcohol 19 with $\mathrm{PPh}_{3}-\mathrm{CBr}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ proceeded chemoselectively to give the desired bromide 10 in 90% yield.

Scheme 5 Synthesis of compound 8

For the synthesis of compound $\mathbf{8}$, a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{9}$ and $\mathbf{1 0}$ was stirred at room temperature for seven days to give the presumed pyridinium ${ }^{13} 20$ that was reduced with NaBH_{4} in one pot to give piperideine ${ }^{14} 21$ in 70% yield. N-Protection [$\left.(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{MeCN}\right]$ of the indole nitrogen in compound 21 produced N-Boc derivative 8 in 91% yield (Scheme 5).
The next task was the regioselective introduction of a cyano group at $\mathrm{C}-2$ of the piperideine ring of compound $\mathbf{8}$ to give compound 7. Attempted cyanation at $\mathrm{C}-2$ of piperideine $\mathbf{8}$ by $\mathrm{Li}^{\prime} \mathrm{s} \mathrm{CDC}$ reaction ${ }^{6,15}$ using either $\mathrm{CuCl}, \mathrm{CuBr}$ or RuCl_{3} in the presence of O_{2}, or $\mathrm{H}_{2} \mathrm{O}_{2}$, or t - BuOOH was unsuccessful. It was found that the oxidative dehydrogenation occurred more readily at the carbon α to the tertbutanesulfinamide group than at the piperidine α-carbon. We then resorted to the Polonovski-Potier reaction. ${ }^{7,16,17}$ However, successive treatment of compound $\mathbf{8}$ with MCPBA and NaCN gave only the corresponding sulfone in 45% yield.
At this stage, modification of our synthetic plan by substitution of the sulfoxide group of tert-butanesulfinamide by a Boc group was indicated. For this purpose, compound 9 was treated with a 4 M HCl in methanol solution ${ }^{9}$ to give amine dihydrochloride salt 22 that was protected $\left[(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}\right]$ to give compound $(R)-\mathbf{2 3}$ in 86% yield over two steps (Scheme 6). Successive treatment of pyridine derivative $\mathbf{2 3}$ with bromide $\mathbf{1 0}$ and NaBH_{4} in methanol afforded compound 24 in 64% yield. Treatment
of compound 24 with $(\mathrm{Boc})_{2} \mathrm{O}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and DMAP in MeCN gave fully protected compound 25 in 92% yield (Scheme 6).

Scheme 6 Synthesis of the key intermediate 28

Compound 25 was subjected to Polonovski-Potier reaction to generate 2 -cyano- Δ^{3}-piperideine 28. In the event, piperideine 25 was treated with MCPBA, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the N-oxide 26, which was treated with TFAA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the presumed iminium intermediate 27 was trapped by KCN in an aqueous $\mathrm{AcOH}-\mathrm{NaOAc}$ buffer solution (pH 4) to afford, in one pot, the desired nitrile 28 as an inseparable diastereomeric mixture in 74% yield (Scheme 6). The diastereomeric ratio was determined to be $58: 42$ by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{18}$
In summary, an efficient synthesis of 2 -cyano- Δ^{3}-piperideine 28, a plausible synthetic equivalent of the key intermediate for a biomimetic synthesis of pentacyclic indole alkaloid arboflorine (1) has been disclosed. Work is in
progress on the key decyanative cyclization ${ }^{16,19}$ and the completion of the total synthesis of arboflorine (1).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Acknowledgment

The authors are grateful to the NSF of China (No. 20832005), the NFFTBS (No. J1030415), and the National Basic Research Program (973 Program) of China (Grant No. 2010CB833200) for financial support.

References and Notes

(1) For some recent reviews, see: (a) Kam, T.-S.; Lim, K.-H. Alkaloids of Kopsia, In The Alkaloids: Chemistry and Biology, Vol. 66; Cordell, G. A., Ed.; Academic Press: Amsterdam, 2008, 1-111. (b) Ishikura, M.; Yamada, K.; Abe, T. Nat. Prod. Rep. 2010, 27, 1630. (c) Li, S.-M. Nat. Prod. Rep. 2010, 27, 57.
(2) Lim, K.-H.; Kam, T.-S. Org. Lett. 2006, 8, 1733.
(3) Huang, P.-Q. Synlett 2006, 1133.
(4) (a) Xiao, K.-J.; Liu, L.-X.; Huang, P.-Q. Tetrahedron: Asymmetry 2009, 20, 1181. (b) Lin, G.-J.; Huang, P.-Q. Org. Biomol. Chem. 2009, 7, 4491. (c) Zheng, X.; Chen, G.; Ruan, Y.-P.; Huang, P.-Q. Sci. China, Ser. B: Chem. 2009, 52, 1631. (d) Yang, R.-F.; Huang, P.-Q. Chem. Eur. J. 2010, 16, 10319. (e) Xiao, K.-J.; Wang, Y.; Ye, K.-Y.; Huang, P.-Q. Chem. Eur. J. 2010, 16, 12792.
(5) (a) Liu, L.-X.; Xiao, K.-J.; Huang, P.-Q. Tetrahedron 2009, 52, 3834. (b) Fu, R.; Du, Y.; Li, Z.-Y.; Xu, W.-X.; Huang, P.-Q. Tetrahedron 2009, 65, 9765. (c) Fu, R.; Chen, J.; Guo, L.-C.; Ruan, Y.-P.; Huang, P.-Q. Org. Lett. 2009, 11, 5242. (d) Fu, R.; Ye, J.-L.; Dai, X.-J.; Ruan, Y.-P.; Huang, P.-Q. J. Org. Chem. 2010, 75, 4230. (e) Zheng, X.; Zhu, W.-F.; Huang, P.-Q. Sci. China, Ser. B: Chem. 2010, 53, 1914.
(6) (a) Li, Z.-P.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173.
(b) Baslé, O.; Li, C.-J. Green Chem. 2007, 9, 1047. (c) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(7) (a) Grierson, D. Org. React. (N.Y.) 1990, 39, 85.
(b) Polonovski, M. Bull. Soc. Chim. Belg. 1930, 39, 1.
(c) Potier, P. Annu. Proc. Phytochem. Soc. Eur. 1980, 17, 159.
(8) (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984. (b) Ellman, J. A. Pure Appl. Chem. 2003, 75, 39. (c) Senanayake, C. H.; Krishnamurthy, D.; Lu, Z.-H.; Han, Z.; Gallon, E. Aldrichimica Acta 2005, 38, 93.
(d) Daniel, M.; Stockman, R. A. Tetrahedron 2006, 62, 8869.
(9) Chelucci, G.; Baldino, S.; Chessa, S.; Pinna, G. A.; Soccolini, F. Tetrahedron: Asymmetry 2006, 17, 3163.
(10) (a) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278. (b) Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268. (c) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403.
(11) (a) Kuehne, M. E.; Xu, F. J. Org. Chem. 1997, 62, 7950. (b) Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11964.
(12) For an alternative method, see: Johansen, M. B.; Kerr, M. A. Org. Lett. 2010, 12, 4956.
(13) Fry, E. M.; Beisler, J. A. J. Org. Chem. 1970, 35, 2809.
(14) Passarella, D.; Martinelli, M.; Llor, N.; Amat, M.; Bosch, J. Tetrahedron 1999, 55, 14995.
(15) (a) Murahashi, S. I.; Komiya, N.; Terai, H. Angew. Chem. Int. Ed. 2005, 44, 6931. (b) Murahashi, S. I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
(16) (a) Grierson, D. S.; Harris, M.; Husson, H.-P. J. Am. Chem. Soc. 1980, 102, 1064. (b) Grierson, D. S.; Vuilhorgne, M.; Husson, H.-P. J. Org. Chem. 1982, 47, 4439. (c) Sundberg, R. J.; Grierson, D. S.; Husson, H.-P. J. Org. Chem. 1984, 49, 2400.
(17) Bonjoch, J.; Solé, D.; García-Rubio, S.; Bosch, J. J. Am. Chem. Soc. 1997, 119, 7230.
(18) All new compounds gave satisfactory analytical and spectral data.

Experimental Procedure for the Synthesis of the Key

Intermediate 28: A solution of MCPBA ($72 \%, 84 \mathrm{mg}, 0.35$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to a solution of compound $25(138 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{~K}_{2} \mathrm{CO}_{3}(70 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added. After stirring for an additional 1 h at $0^{\circ} \mathrm{C}$, the mixture was filtered through celite. The residue was purified by flash column chromatography on silica gel $\left(R_{f} 0.18\right.$, eluent: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 15: 1\right)$ to give N-oxide $26(140 \mathrm{mg}$, 98%), which was dissolved in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. TFAA ($0.07 \mathrm{~mL}, 0.5 \mathrm{mmol}$) was added. After being stirred for 30 min at $0^{\circ} \mathrm{C}$, an aqueous solution $(0.5$ mL) of $\mathrm{KCN}(65 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added, and the solution was buffered to pH 4 by addition of AcOH and NaOAc . After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was basified with
$\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined extracts were successively washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and brine (1 mL), dried over anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}\left(R_{f}=0.4\right.$, eluent: EtOAc-n-hexane, 1:4) to give compound 28 (108 mg, 74\% from 25) as a white amorphous solid. IR (film): 3370, 2978, 2934, 2216 (w, CN), 1730 (s), 1511, 1458, 1392, 1367, 1328, $1248,1169,1133 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; diastereomeric mixture and rotamers): $\delta=1.25(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.44\left[\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.65\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.08-2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right)$, 2.26-2.44 (m, 1 H, C= $\left.\mathrm{CHCH}_{2}\right), 2.53-2.63(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.70-2.95\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 4.16(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCN}), 4.22-4.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, 4.57 (br s, $1 \mathrm{H}, \mathrm{NH}$), 5.86, 5.89 (br s, $1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 7.24 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.53$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.09 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; diastereomeric mixture and rotamers): d = 14.2, 22.4, 22.5, 25.1, 25.2, 28.1, 28.25, $28.29,28.33,28.7,29.6,33.17,33.2,45.6,45.65,47.5,52.4$, $55.2,55.3,60.8,79.8,80.1,84.0,115.7,115.9,116.1,118.0$, $118.1,118.2,122.5,124.2,124.449,124.458,129.2,129.7$, $129.8,134.08,134.14,135.8,150.4,155.3,170.12,170.18$. HRMS: $m / z\left[\mathrm{M}+\mathrm{Na}^{+}\right]$calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{NaO}_{6}: 603.3159$; found: 603.3153.
(19) Agami, C.; Couty, F.; Evano, G. Org. Lett. 2000, 2, 2085.

