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Abstract: The synthesis of a plausible key intermediate for a bio-
mimetic asymmetric synthesis of indole alkaloid arboflorine is de-
scribed. The method featured the use of Ellman’s sulfinamide
chemistry for the establishment of the first chiral center, and the
Polonovski—Potier reaction for the formation of the o-aminonitrile
moiety.
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Indole alkaloids are a class of natural products widely dis-
tributed in plants that exhibit structural diversity and sig-
nificant biological activities.! In 2006, Kam and co-
workers reported the isolation and structure elucidation of
arboflorine (1) as a minor alkaloid from the stem bark of
the Malayan Kopsia arborea.* A notable feature of this
new alkaloid resides in that it represents a new subclass of
monoterpenoid indoles with a novel pentacyclic carbon
skeleton. Moreover, the incorporation of a third nitrogen
atom embedded within a tryptamine—secologanin-derived
monoterpenoid indole is also unusual (Figure 1).
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Figure 1 Structure of arboflorine

In continuation of our interest in the asymmetric synthesis
of bioactive alkaloids,® in particular piperidines* and 2-
piperidinones,’ we have embarked on the asymmetric syn-
thesis of arboflorine (1), and the preliminary results on the
construction of a key intermediate are presented herein.

Our approach is based on the possible biogenetic pathway
proposed by Kam and co-workers,? which highlighted the
cyclization of the key intermediate 2 (Scheme 1). In our
retrosynthetic analysis showed in Scheme 2, compound 7
was designed as a precursor of the key intermediate 6,
which is similar to the proposed biogenetic intermediate
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2. The o-aminonitrile 7 was envisioned to be prepared
from piperideine 8 by Li’s cross-dehydrogenative-cou-
pling reaction (CDC)® or the Polonovski—Potier reaction.’
Compound 8, in turn, could be accessible from chiral
amine 9 and indole derivative 10. Chiral amine 9 could be

NH,

Scheme 1 Possible biogenetic pathway to 1 (in part) suggested by
Kam and co-workers

IS L

N
H

O N
H

arboflorine (1) 5

Scheme 2 Retrosynthetic analysis of arboflorine
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synthesized by chiral directing reduction of Ellman’s sul-
finamide.®’

The synthesis started with the preparation of the protected
(RS,R)-N-tert-butanesulfinyl amine 9 by a known proce-
dure (Scheme 3).° Ti(OEt),-mediated®'? condensation of
3-acetylpyridine (11) with Ellman’s (R)-sulfinamide 128
afforded sulfinimine 13 in 88% yield. Reduction of sulfin-
imine 13 with DIBAL-H in THF at —78 °C’ produced the
desired compound 9 in 89% yield.
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Scheme 3  Synthesis of compound 9

The synthesis of segment 10 is outlined in Scheme 4,
which started with 2-(indol-3-yl)acetic acid (14). Reduc-
tion of 2-(indol-3-yl)acetic acid (14) with lithium alumi-
num hydride in THF gave the corresponding alcohol 15 in
96% yield, which was protected (TBSCI, Et;N, CH,Cl,) to
give compound 16 in 98% yield.

COOH
oH  TBSCI, EtsN,
LiAH,, THF A CHCl,
R — —_— >
B rt, 10h | rt,4h
N 96% N 98%
H H
14 15
orBs +BUOCI o oras LIGHCO,Et
N EtN, THF CO,t-Bu
—_— —_—
| -78°C, | ZnCly, 1 h,
N 20 min - Xy N 78 °C
H 94% from 16
16 17
oTBS
CFacOOH, CH20|2, OH
0°Ctort,6h; = A\
_B _—
B W= Tl |
N rt,2h H CO2Et
CO,Et 86%
18 19
PhsP, CBry, Br
CH.CI
2Clp 7 | N\
0°C,2h [
90% H CO,Et
10

Scheme 4 Synthesis of compound 10

Oxidative conversion of 3-substituted indole 16 into
chloroindolenine 17 and use of this compound for the
functionalization at the carbon a to nitrogen by Kuehne’s
method'"'? (+-BuOCl, Et;N, THF; ZnCl,, lithium ethyl
tert-butyl malonate) provided compound 18 in 94% yield.
Successive treatment of compound 18 with trifluoroacetic
acid and potassium carbonate gave the desilylated and de-
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carboxylated product 19 in an overall yield of 86%. Treat-
ment of indole-alcohol 19 with PPh,—CBr, in CH,CI,
proceeded chemoselectively to give the desired bromide
10 in 90% yield.
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Scheme 5 Synthesis of compound 8

For the synthesis of compound 8, a CH,Cl, solution of 9
and 10 was stirred at room temperature for seven days to
give the presumed pyridinium!3 20 that was reduced with
NaBH, in one pot to give piperideine'* 21 in 70% yield.
N-Protection [(Boc),0, Et;N, DMAP, MeCN] of the in-
dole nitrogen in compound 21 produced N-Boc derivative
8 in 91% yield (Scheme 5).

The next task was the regioselective introduction of a cy-
ano group at C-2 of the piperideine ring of compound 8 to
give compound 7. Attempted cyanation at C-2 of piperi-
deine 8 by Li’s CDC reaction®'> using either CuCl, CuBr
or RuCl; in the presence of O,, or H,0,, or -BuOOH was
unsuccessful. It was found that the oxidative dehydroge-
nation occurred more readily at the carbon a to the tert-
butanesulfinamide group than at the piperidine a-carbon.
We then resorted to the Polonovski—Potier reaction.”!%!7
However, successive treatment of compound 8 with
MCPBA and NaCN gave only the corresponding sulfone
in 45% yield.

At this stage, modification of our synthetic plan by substi-
tution of the sulfoxide group of tert-butanesulfinamide by
a Boc group was indicated. For this purpose, compound 9
was treated with a 4 M HCI in methanol solution® to give
amine dihydrochloride salt 22 that was protected
[(Boc),0, Et;N, MeCN] to give compound (R)-23 in 86%
yield over two steps (Scheme 6). Successive treatment of
pyridine derivative 23 with bromide 10 and NaBH, in
methanol afforded compound 24 in 64% yield. Treatment
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of compound 24 with (Boc),0 in the presence of Et;N and
DMAP in MeCN gave fully protected compound 25 in
92% yield (Scheme 6).
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Scheme 6 Synthesis of the key intermediate 28

Compound 25 was subjected to Polonovski—Potier reac-
tion to generate 2-cyano-A3-piperideine 28. In the event,
piperideine 25 was treated with MCPBA, K,CO; in
CH,CI, to give the N-oxide 26, which was treated with
TFAA in CH,Cl,, and the presumed iminium intermediate
27 was trapped by KCN in an aqueous AcOH-NaOAc
buffer solution (pH 4) to afford, in one pot, the desired ni-
trile 28 as an inseparable diastereomeric mixture in 74%
yield (Scheme 6). The diastereomeric ratio was deter-
mined to be 58:42 by '"H NMR analysis. '8

In summary, an efficient synthesis of 2-cyano-A*-piperi-
deine 28, a plausible synthetic equivalent of the key inter-
mediate for a biomimetic synthesis of pentacyclic indole
alkaloid arboflorine (1) has been disclosed. Work is in

progress on the key decyanative cyclization'®! and the
completion of the total synthesis of arboflorine (1).

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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