Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies

Abstract

Poly(1-amino-5-chloroanthraquinone) (PACA) nanofibrils were applied as novel nanoadsorbents for highly toxic mercury removal from aqueous solutions. A series of batch adsorption experiments were conducted to study the effect of adsorbent dose, pH, contact time, and metal concentration on Hg(II) uptake by PACA nanofibrils. Kinetic data indicated that the adsorption process of PACA nanofibrils for Hg(II) achieved equilibrium within 2 h following a pseudo-second-order rate equation. The adsorption mechanism of PACA nanofibrils for Hg(II) was investigated by Fourier transform-infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption isotherm of Hg(II) fitted well the Langmuir model, exhibiting superb adsorption capacity of 3.846 mmol of metal per gram of adsorbent. Lastly, we found out that the as-synthesized PACA nanofibrils are efficient in Hg(II) removal from real wastewater. Furthermore, five consecutive adsorption-desorption cycles demonstrated that the PACA nanofibrils were suitable for repeated use without considerable changes in the adsorption capacity

    Similar works