100 research outputs found

    Fast Witness Extraction Using a Decision Oracle

    Full text link
    The gist of many (NP-)hard combinatorial problems is to decide whether a universe of nn elements contains a witness consisting of kk elements that match some prescribed pattern. For some of these problems there are known advanced algebra-based FPT algorithms which solve the decision problem but do not return the witness. We investigate techniques for turning such a YES/NO-decision oracle into an algorithm for extracting a single witness, with an objective to obtain practical scalability for large values of nn. By relying on techniques from combinatorial group testing, we demonstrate that a witness may be extracted with O(klogn)O(k\log n) queries to either a deterministic or a randomized set inclusion oracle with one-sided probability of error. Furthermore, we demonstrate through implementation and experiments that the algebra-based FPT algorithms are practical, in particular in the setting of the kk-path problem. Also discussed are engineering issues such as optimizing finite field arithmetic.Comment: Journal version, 16 pages. Extended abstract presented at ESA'1

    Hysteretic behavior of angular dependence of exchange bias in FeNi/FeMn bilayers

    Get PDF
    For FeNi/FeMn bilayers, the angular dependence of exchange bias shows hysteresis between clockwise and counterclockwise rotations, as a new signature. The hysteresis decreases for thick antiferromagnet layers. Calculations have clearly shown that the orientation of antiferromagnet spins also exhibits hysteresis between clockwise and counterclockwise rotations. This furnishes an interpretation of the macroscopic behavior of the ferromagnetic layer in terms of the thermally driven evolution of the magnetic state of the antiferromagnet layer

    β-aminobutyric acid induces disease resistance against Botrytis cinerea in grape berries by a cellular priming mechanism

    Get PDF
    The present study was performed to investigate the effect of β-aminobutyric acid (BABA) treatment on defence activation in grape berries and to analyse its cellular mechanism. The results implied that BABA treatment at an effective concentration of 20 mM significantly inhibited gray mould rot caused by Botrytis cinerea in grape berries by inducing resistance. Accordingly, 20 mM BABA triggered a priming defence in grape suspension cells, since only the BABA-treated cells exhibited an accelerated ability for augmenting defence responses upon the pathogen inoculation. The primed cellular reactions were related to an early H2O2 burst, prompt accumulation of stilbene phytoalexins and activation of PR genes. Thus, we assume that 20 mM BABA can induce resistance to B. cinerea infection in intact grape berries perhaps via intercellular priming defence. Moreover, the BABA-induced priming defence is verified, because no negative effects on cell growth, anthocyanin synthesis, and quality impairment in either grape cells or intact berries were observed under low pathogenic pressure

    Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers

    Get PDF
    For polycrystalline NiFe/FeMn bilayers, we have observed and quantified the rotation of the pinning direction in the exchange bias training and recovery effects. During consecutive hysteresis loops, the rotation of the pinning direction strongly depends on the magnetization reversal mechanism of the ferromagnet layer. The interfacial uncompensated magnetic moment of antiferromagnetic grains may be irreversibly switched and rotated when the magnetization reversal process of the ferromagnet layer is accompanied by domain wall motion and domain rotation, respectively

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2logn)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlogn)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of δm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant δ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)logn)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009

    Group testing with Random Pools: Phase Transitions and Optimal Strategy

    Full text link
    The problem of Group Testing is to identify defective items out of a set of objects by means of pool queries of the form "Does the pool contain at least a defective?". The aim is of course to perform detection with the fewest possible queries, a problem which has relevant practical applications in different fields including molecular biology and computer science. Here we study GT in the probabilistic setting focusing on the regime of small defective probability and large number of objects, p0p \to 0 and NN \to \infty. We construct and analyze one-stage algorithms for which we establish the occurrence of a non-detection/detection phase transition resulting in a sharp threshold, Mˉ\bar M, for the number of tests. By optimizing the pool design we construct algorithms whose detection threshold follows the optimal scaling MˉNplogp\bar M\propto Np|\log p|. Then we consider two-stages algorithms and analyze their performance for different choices of the first stage pools. In particular, via a proper random choice of the pools, we construct algorithms which attain the optimal value (previously determined in Ref. [16]) for the mean number of tests required for complete detection. We finally discuss the optimal pool design in the case of finite pp

    Superselectors: Efficient Constructions and Applications

    Full text link
    We introduce a new combinatorial structure: the superselector. We show that superselectors subsume several important combinatorial structures used in the past few years to solve problems in group testing, compressed sensing, multi-channel conflict resolution and data security. We prove close upper and lower bounds on the size of superselectors and we provide efficient algorithms for their constructions. Albeit our bounds are very general, when they are instantiated on the combinatorial structures that are particular cases of superselectors (e.g., (p,k,n)-selectors, (d,\ell)-list-disjunct matrices, MUT_k(r)-families, FUT(k, a)-families, etc.) they match the best known bounds in terms of size of the structures (the relevant parameter in the applications). For appropriate values of parameters, our results also provide the first efficient deterministic algorithms for the construction of such structures

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    On the minimum feasible graph for four sets

    No full text
    corecore