113 research outputs found
Conformational and Reaction Dynamic Coupling in Histidine Kinases: Insights from Hybrid QM/MM Simulations
Histidine kinases (HK) of bacterial two-component systems represent a hallmark of allosterism in proteins, being able to detect a signal through the sensor domain and transmit this information through the protein matrix to the kinase domain which, once active, autophosphorylates a specific histidine residue. Inactive-to-active transition results in a large conformational change that moves the kinase on top of the histidine. In the present work, we use several molecular simulation techniques (Molecular Dynamics, Hybrid QM/MM, and constant pH molecular dynamics) to study the activation and autophosphorylation reactions in L. plantarum WalK, a cis-acting HK. In agreement with previous results, we show that the chemical step requires tight coupling with the conformational step in order to maintain the histidine phosphoacceptor in the correct tautomeric state, with a reactive δ-nitrogen. During the conformational transition, the kinase domain is never released and walks along the HK helix axis, breaking and forming several conserved residue-based contacts. The phosphate transfer reaction is concerted in the transition state region and is catalyzed through the stabilization of the negative developing charge of transferring phosphate along the reaction.Fil: Olivieri, Federico Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Burastero, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Drusin, Salvador Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Defelipe, Lucas Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Wetzler, Diana Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin
A transmembrane histidine kinase functions as a pH sensor
The two-component system DesK-DesR regulates the synthesis of unsaturated fatty acids in the soil bacteria Bacillus subtilis. This system is activated at low temperature and maintains membrane lipid fluidity upon temperature variations. Here, we found that DesK—the transmembrane histidine kinase—also responds to pH and studied the mechanism of pH sensing. We propose that a helix linking the transmembrane region with the cytoplasmic catalytic domain is involved in pH sensing. This helix contains several glutamate, lysine, and arginine residues At neutral pH, the linker forms an alpha helix that is stabilized by hydrogen bonds in the i, i + 4 register and thus favors the kinase state. At low pH, protonation of glutamate residues breaks salt bridges, which results in helix destabilization and interruption of signaling. This mechanism inhibits unsaturated fatty acid synthesis and rigidifies the membrane when Bacillus grows in acidic conditions.Fil: Bortolotti, Ana. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Vázquez, Daniela Belén. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Almada, Juan Cruz. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Inda, María Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Drusin, Salvador Iván. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Química y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Villalba, Juan Manuel. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Moreno, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Química y Física; ArgentinaFil: Ruysschaert, Jean Marie. Structure et Fonction des Membranes Biologiques; BélgicaFil: Cybulski, Larisa Estefania. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentin
Identification of key sequence features required for microRNA biogenesis in plants
MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis
Estudio bioinformático estructural del reconocimiento de ARN en el procesamiento de miARNs en plantas
Los microARN (miARN) son moléculas de ARN pequeñas de 21 nucleótidos de longitud que se sintetizan en el núcleo por la ARN polimerasa II. En plantas, están involucrados en la regulación de procesos como el desarrollo, respuestas a estrés y respuestas a hormonas. La biogénesis de miARN comienza con la transcripción de precursores más largos con forma de hebilla dentro de los cuales está contenida su secuencia. Estos precursores son procesados por un complejo proteico formado por la proteína DICER-LIKE 1 (DCL1) junto a otras proteínas accesorias. Los precursores de plantas son sumamente heterogéneos. Sin embargo, la maquinaria de procesamiento, es capaz de liberar con precisión el miARN.
En el presente trabajo se realizó un estudio del mecanismo de procesamiento de los precursores de miARN a través de técnicas de simulación computacional. Para ello, se analizaron distintos agentes participantes del proceso: el precursor de miARN, el dominio de unión a ARN de doble hebra de DCL1 (DCL1-1) y los dominios RIIID de DCL1 en los cuales transcurre la reacción de digestión del ARN.
La creación de una estructura de un complejo entre DCL1-1 y un ARN de doble hebra (ARNdh) permitió detectar las diferencias entre este dominio y otros similares de diferentes proteínas. El análisis de las simulaciones de dinámica molecular permitió establecer algunos de los elementos principales que le permiten al dominio DCL1-1 identificar al precursor de miARN. Principalmente, se halló que el residuo Arg8 es un residuo importante en este proceso ya que puede reconocer pares de bases no canónicos en el ARNdh objetivo y anclar el dominio en una posición específica del mismo. Estos hallazgos fueron validados experimentalmente.
El modelado de diferentes pares de base en la secuencia de dos precursores de miARN permitió establecer el efecto que las mismas tienen sobre la estructura del ARNdh. Se encontró que los pares de bases no canónicos tienen comportamientos heterogéneos con diferentes grados de estabilidad y de interacción entre las bases. Los resultados hallados permiten explicar las diferencias de procesamiento en experimentos de mutación de precursores de miARN.
El funcionamiento de los dominios RIIID se estudió a través de la proteína RNasa III bacteriana. Por medio de técnicas de modelado molecular, se construyó el complejo de este dominio con un ARNdh y se realizaron simulaciones de dinámica molecular dirigida a fin de recrear la reacción de hidrólisis sobre su grupo fosfato. Estos experimentos permitieron obtener información sobre el rol que juegan los diferentes elementos que componen el sitio activo: los iones de Mg2+, el nucleófilo, los residuos y las moléculas de solvente cercanas. Se halló que las moléculas de agua vecinas al sitio activo tienen una participación en la reacción al mediar en las transferencias de protones. Por otro lado, se reveló que el nucleófilo no es una molécula de agua, sino un ion hidroxilo. Finalmente, se encontró que los iones catalíticos tienen la capacidad de facilitar la deprotonación de una de las moléculas de agua coordinadas para generar el ion hidroxilo en una posición apropiada para el ataque nucleofílico.Fil: Drusin, Salvador Iván. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Área Química General e Inorgánica. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina
- …