64 research outputs found

    Captain John Clements Wickham, R.N. his antecedents and descendants

    Get PDF

    Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S

    Get PDF
    We report the discovery of very-high-energy (VHE) gamma-ray emission of the binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive, luminous Be star in a highly eccentric orbit. The observations around the 2004 periastron passage of the pulsar were performed with the four 13 m Cherenkov telescopes of the H.E.S.S. experiment, recently installed in Namibia and in full operation since December 2003. Between February and June 2004, a gamma-ray signal from the binary system was detected with a total significance above 13 sigma. The flux was found to vary significantly on timescales of days which makes PSR B1259-63 the first variable galactic source of VHE gamma-rays observed so far. Strong emission signals were observed in pre- and post-periastron phases with a flux minimum around periastron, followed by a gradual flux decrease in the months after. The measured time-averaged energy spectrum above a mean threshold energy of 380 GeV can be fitted by a simple power law F_0(E/1 TeV)^-Gamma with a photon index Gamma = 2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys) 10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous evidence for particle acceleration to multi-TeV energies in the binary system. In combination with coeval observations of the X-ray synchrotron emission by the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to be produced by the inverse Compton mechanism, the magnetic field strength can be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June 2005, replace: document unchanged, replaced author field in astro-ph entry - authors are all members of the H.E.S.S. collaboration and three additional authors (99+3, see document

    Gravitational Radiation From Cosmological Turbulence

    Get PDF
    An injection of energy into the early Universe on a given characteristic length scale will result in turbulent motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation background has a maximum amplitude comparable to the radiation background from the collision of bubbles in a first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.Comment: 20 pages. Corrections for an errant factor of 2 in all the gravity wave characteristic amplitudes. Accepted for publication in Phys. Rev.

    A low level of extragalactic background light as revealed by big gamma-rays from blazars

    Get PDF
    The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light1. An alternative approach2, 3, 4, 5 is to study the absorption features imprinted on the -ray spectra of distant extragalactic objects by interactions of those photons with the background light photons6. Here we report the discovery of -ray emission from the blazars7 H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies8. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources—in particular from the first stars formed9. This result also indicates that intergalactic space is more transparent to -rays than previously thought

    Discovery of extended VHE gamma-ray emission from the asymmetric pulsar wind nebula in MSH 15-52 with H.E.S.S

    Get PDF
    The Supernova Remnant MSH 15-52 has been observed in very high energy (VHE) gamma-rays using the H.E.S.S. 4-telescope array located in Namibia. A gamma-ray signal is detected at the 25 sigma level during an exposure of 22.1 hours live time. The image reveals an elliptically shaped emission region around the pulsar PSR B1509-58, with semi-major axis 6' in the NW-SE direction and semi-minor axis 2' approximately. This morphology coincides with the diffuse pulsar wind nebula as observed at X-ray energies by ROSAT. The overall energy spectrum from 280 GeV up to 40 TeV can be fitted by a power law with photon index Gamma = 2.27 +/- 0.03(stat.) +/- 0.20(syst.). The detected emission can be plausibly explained by inverse Compton scattering of accelerated relativistic electrons with soft photons.Comment: 5 pages, 3 figures, accepted by A&A letter
    corecore